Inexpensive logic controls stepper motor

David Ellis, Ellis Lindauer, Pullman, WA

A number of sophisticated ICs for step-per-motor control are now available. However, the advanced features of these chips-self-clocking, high-current drive, and full-step, half-step, and direction control-are often unnecessary or remain unused. For a design that needs to control only the number of steps, drive speed, and direction, you can make a very simple and inexpensive driver using two low-level logic chips (Figure 1). The cost of this controller is less than \$1; thecost of dedicated motor-control ICs starts at around $\$ 5$. Thedrawback is a slight increase in board space.

Going back to the basics, you can control a standard step-per-motor drive, whether bipolar or unipolar, using a fourstep sequence (Table 1a). By replacing the on and off states with ones and zeros, respectively (Table 1b), Column B becomes the logical inverse of Column A, and Column D becomes the logical inverse of Column C. Thus, the corresponding state diagram (Figure 2) comprises just 2 bits. Clockwise rotation results from using a logical oneto move sequentially from state one to state four and back to state one. Likewise, counterclockwise rotation results from using a logical zero to move through the states in the reverse order.

TABLE 1—StEPPER-MOTOR-DRIVE SEQUENCE

(a)
(b)

You can then produce the present-state/next-state assignment (Table2) and the next-state maps (Figure 3). Then, by inspection, the logical choice is to loop the state maps out for D flip-flops, which produces the following two logic equations:

$$
\begin{align*}
& D A=((D I R)(C))+((D I R)(C)) ; \tag{1}\\
& D B=((D I R)(A))+((D I R)(A)) . \tag{2}
\end{align*}
$$

Equation $\mathbf{1}$ is an exclusive NOR, and Equation $\mathbf{2}$ is an exclusive OR. To save space, you can use a single quad XOR chip to implement both equations. A dual D flip-flop completes the logic driver, as Figure 1 shows. Using rising-edgetriggered D flip-flops helps keep the design simple while eliminating mode-change faults.

The circuit derives the four outputs from the Q and Q

Two logic-level ICs can implement simple and inexpensive control of a stepper-motor driver.

The state diagram for the stepper-motor controller comprises just 2 bits.
outputs of D flip-flops $I C_{2 A}$ and $I C_{2 B}$ in Figure 1. $I C_{1 A}$ XORs the Q output of flip-flop $I C_{2 B}$ with the DIR input, and the circuit transforms the output into an XNOR by using IC ${ }_{1 B}$ as a controlled inverter. $I C_{1 B}$ then drives the D input of flipflop IC ${ }_{2 A}$. Similarly, $I C_{1 C} \times$ ORs the Q output of $I C_{2 A}$ with the DIR input. The output of IC $1 c$ drives XOR IC C_{10}, which acts as a noninverting buffer. The output of $I C_{1 D}$ drives the D input of $I C_{2 B}$. Using XOR gate $I C_{1 D}$ as a buffer keeps the propagation delays to the D inputs of the flip-flops equal, which helpsthecircuit avoid any race conditions. The STEP signal is the step-rate input, which drives the clock inputs of both flip-flops.

The last design task is to add the appropriate-sized transistors to drive the stepper motor. In the case of the unipolar motor, output signals A, B, C, and D can directly drive the transistors. To drive a bipolar motor, you can use the A and C outputs to drive one-half of two H -bridges and the B and D outputs to drive the other corresponding half of the

Figure 3

DIR			
00	01	11	10
1	0	0	1
0	1	1	0

The next-state maps correspond to two simple logic equations.
TABLE 2-PRESENTSTATE/NEXTSTATIE
ASSIGNMENT TABLE

Present state				
\mathbf{A}	C	DIR	\mathbf{A}	\mathbf{C}
0	0	0	1	0
0	0	1	0	1
0	1	0	0	0
0	1	1	1	1
1	0	0	1	1
1	0	1	0	0
1	1	0	0	1
1	1	1	1	0

H-bridges. This design is possible because the B output is the inverse of A, and D is the inverse of C. (DI \#2176)

EDN
To Vote For This Design, Circle No. 418

