Field Failure Protection for I)C Motors

The speed of a DC motor is extensively used for industrial upplications where a precise speed control and a eonstant 'orque are desired. It is inversely proprotional to its field urrent. In case of field eurrent failure, the motor speed will ise to dangerously high level. A field failure protection is herefore necessary to eut off the armature supply in case of eld current fallure.
The basic circuit of the field failure protection uses an rdinary 6 V electromagnetic relay of the open type with 10 ULY 1986
amps rated sturdy contacts. I his relay can be uned on a mantal autoransformencontrolled DC drive. This motor hass a shunt lield current of 1.13 amps at 220 V D(. 15 -ohm (25-watl) wircwound resistor (RI) connected in series with the motor tield produces a 5 . 6 -volt drop across revistor (RI) as long as the lield current exists, thus energising the (oV I)C relay connected across the resistor ar shown in l'g. I.

Fig. 1
In case the motor lield current lals due lo any lault. the voltage drop across resistor (RI) will be tero which deenergises the relay (1 F F) and cuts of the armature supply.
the circuit diagram of a manual autonanslormencontrolled D(drive of a $2.30 \mathrm{~V}, 5 \mathrm{HP}$ I)(motor with a separately excited shunt field of 2.30 volts (1.13 amps) and the $1: 1 \mathrm{R}$ (field failure relay) circoit are shown in $\begin{aligned} & \text { legn } 2 \text { and } 3\end{aligned}$ respectively. When the start pushbution $\$ 2$ is pressed, the contactor (is energised through $\mathrm{S} 2(\mathrm{~N} \cdot \mathrm{O}$ contact). limit LIMit

Fig. 2
switch $\mathbf{S} .3$ and stop pushbutton Sl ($\mathrm{N} / \mathrm{C}^{\prime}$ contact).
The limis switch $\mathbf{S} \mathbf{3}$ is aetually a part of the autotranslormer, and it is so mounted that its contacts remain elosed only when the autotransformer setting is at zero position. At all other settings of the autotransformer, the limit switch contacts remain open. This is a safety deviee introduced, so that the motor can be started only from the minimum position of the autotransformer setting, thereby starting at reduced voltage and current. If the motor is started ona high armature voltage, the starting current will be very high, especially if started on load, as is usually the case.

As soon as the contactor C is energised, its contacts $\mathrm{Cl}-\mathrm{C} 3$

Fig. 3
ate cloned. A 230 V AC' is now available at the autotranformer input termmals, and a 230 V DC via lufl-uave bidge tectitier BRI and series resistor RI to the motor feld winding.

As soon as feeld eurrent flows. the drop ateross RI energises the frR. FrR has got two pairs of N () contacts. FHRI and FFR2, which now close. FFRI when closed provides a retaining supply to contactor (' through its own contaet ('I. and becomes independent of S? (wheth can now he released) and S.3.

The motor can now be sarted by oncreasing the atatomsformer setting wheteby the output through the budge retillier BR2 apples a 1)(voltage to the motot armature to smoothly start the motor at a speed depending uport the setting of the actotransformer. In case of field cuirent tailure, IFR drops and eontictor (opens to disconnect amature supply.

The fFR2 contacts (which are optional, butare useful an stown here) provide an LED) indication that the FHR is operating. Alternatively, an ammeter can be used whe field cireut to show that the field current is flowing.

The Re' network across the diades is for surge protection of the dodes only. Usually a wirewound resistor 20 h . 25 W il the field excitation voltage is 230 V [)(] is connected aeross the rectifice output to the highty inductive field winding. whereas a lifth doode is connected with reversc polarity across the bridge rectufier (BR2) output to the armature.

Vote that RI (5 -ohm), connected in serics witt the field winding will have negligible effect in the field current (field re, ance being above 200 ohms). However, if one wishes to
reduce the voltage drop across R 1 , two 5 -ohm, 15 W resistors may be used in paraflel, and the FFR replaced by a 3 V D) (-operated relay which is available with some manufacturers.

Note: EFY is not responsible for any mallunctioning in the cirenit as the same has not been tested in our fab.

