
C I R C U I T I D E A S

ELECTRONICS FOR YOUNOVEMBER 2002

RUPANJANAAUTOMATED TRAFFIC SIGNAL
CONTROLLER

This automated traffic signal control-
ler can be made by suitably pro-
gramming a GAL device. (For GAL

programming you may refer to the con-

struction project published on page 52 in
EFY’s September issue.) Its main features
are:

1. The controller assumes equal traffic
density on all the roads.

2. In most automated traffic signals the
free left-turn condition is provided through-
out the entire signal period, which poses
difficulties to the pedestrians in crossing
the road, especially when the traffic den-

VIKRAM BANERJEE
MRINAL KANTI MANDAL
DR ANIRUDHA GHOSAL

sity is high. This controller allows the pe-
destrians to safely cross the road during
certain periods.

3. The controller uses digital logic,
which can be easily implemented by us-
ing logic gates.

4. The controller is a generalised one
and can be used for different roads with

slight modification.
5. The control can also be exercised

manually when desired.
The time period for which green, yel-

low, and red traffic signals remain ‘on’
(and then repeat) for the straight moving
traffic is divided into eight units of 8
seconds (or multiples thereof) each. Fig.
1 shows the flow of traffic in all permis-
sible directions during the eight time units

of 8 seconds each. For the left- and right-
turning traffic and pedestrians crossing
from north to south, south to north, east
to west, and west to east, only green and
red signals are used.

Table I shows the simultaneous states
of the signals for all the traffic. Each row
represents the status of a signal for 8

seconds. As can be observed from the
table, the ratio of green, yellow, and red
signals is 16:8:40 (=2:1:5) for the straight
moving traffic. For the turning traffic the
ratio of green and red signals is 8:56
(=1:7), while for pedestrians crossing the
road the ratio of green and red signals is
16:48 (=2:6).

In Table II (as well as Table I) X, Y,
and Z are used as binary variables to

Fig. 1: Flow of traffic in all possible directions

TABLE I
Simultaneous States of Signals for All the Traffic

X Y Z B-C/B-G B-E D-E/D-A D-G F-G/F-C F-A H-A/H-E HC WALK WALK
Lt/Rt St Lt/Rt St Lt/Rt St Lt/Rt St (N-S)/(S-N) (E-W)/(W-E)

0 0 0 R R R R G G R R R R
0 0 1 R G R R R G R R G R
0 1 0 R G R R R Y R R G R
0 1 1 G Y R R R R R R R R
1 0 0 R R R R R R G G R R
1 0 1 R R R G R R R G R G
1 1 0 R R R G R R R Y R G
1 1 1 R R G Y R R R R R R

C I R C U I T I D E A S

ELECTRONICS FOR YOU NOVEMBER 2002

depict the eight states of 8
seconds each. Letters A
through H indicate the left
and right halves of the roads
in four directions as shown
in Fig. 1. Two letters with a
dash in between indicate the
direction of permissible
movement from a road.
Straight direction is indicated
by St, while left and right
turns are indicated by Lt and
Rt, respectively.

The Boolean functions
for all the signal conditions
are shown in Table II.
The left- and the right-turn
signals for the traffic have
the same state, i.e. both are
red or green for the same
duration, so their Boolean
functions are identical and
they should be
connected to the same con-

Fig. 2: The circuit diagram for traffic light signalling

TABLE II
Boolean Functions for All the Signal Conditions

Signal Reference Boolean functions

Green B-C(Lt)/B-G (Rt) X’YZ
Green B-E (St) XYZ’+X’Y’Z
Red B-E (St) X+Y’Y’Z’
Yellow B-E (St) X’YZ
Green D-E (Lt)/D-A (Rt) XYZ
Green D-G (St) XYZ’+XY’Z
Red D-G (St) X’+XY’Z’
Yellow D-G (St) XYZ
Green F-G(Lt)/F-C (Rt) X’Y’Z’
Green F-A (St) X’Y’
Red F-A (St) X+X’YZ
Yellow F-A (St) X’YZ’
Green H-A (Lt)/H-E (Rt) XY’Z’
Green H-C (St) XY’
Red H-C (St) X’+XYZ
Yellow H-C (St) XYZ’
Green Walk (N-S/S-N) X’YZ’+X’Y’Z
Green Walk (E-W/W-E) XYZ’+XY’Z
Note. X’, Y’, and Z’ denote complements of variables X, Y,

and Z, respectively.

trol output.
The circuit diagram for realising these

Boolean functions is shown in Fig. 2.
Timer 555 (IC1) is wired as an astable
multivibrator to generate clock signal for
the 4-bit counter 74160 (IC2). The time
duration of IC1 can be adjusted by vary-
ing the value of resistor R1, resistor R2,
or capacitor C2 of the clock circuit. The
‘on’ time duration T is given by the fol-
lowing relationship:

T = 0.695C2(R1+R2)
IC2 is wired as a 3-bit binary counter

by connecting its Q3 output to reset pin 1
via inverter N1. Binary outputs Q2, Q1,
and Q0 form variables X, Y, and Z, re-
spectively. These outputs, along with their
complimentary outputs X’, Y’, and Z’,
respectively, are used as inputs to the rest
of the logic circuit to realise various out-
puts satisfying Table I.

You can simulate various traffic lights
using green, yellow, and red LEDs and
feed the outputs of the circuit to respec-

tive LEDs via
current-limit-
ing resistors of
470 ohms each
to check the
working of the
circuit. Here,
for turning traf-
fic and pedes-
trians crossing
the road, only
green signal is
made avail-
able. It means
that for the re-
maining period
these signals
have to be
treated as ‘red’.

In practice,
the outputs of
Fig. 2 should
be connected
to solidstate re-
lays to operate
h i g h - p o w e r
bulbs. Further,
if a particular
signal condi-
tion (such as
turning signal)
is not appli-
cable to a
given road, the
output of that
signal condi-
tion should be

C I R C U I T I D E A S

ELECTRONICS FOR YOUNOVEMBER 2002

#include<stdio.h>
#include<conio.h>
#define TRUE 1
#define False 0

int not(int x);
int or2(int x,int y);
int or3(int x,int y,int z);
int and2(int x,int y);
int and3(int x,int y,int z);
int main(void)
{
int a,b,c;
int seq,green_bl,green_bs,red_bs,yellow_bs;
int green_dl,green_ds,red_ds,yellow_ds;
int green_fl,green_fs,red_fs,yellow_fs;
int green_hl,green_hs,red_hs,yellow_hs;
int walk_ns,stop_ns;
int walk_ew,stop_ew;

clrscr();
printf(“ SIG-B SIG-D SIF-F SIG-H
WALK(N-S) WALK(E-W)\n”);
printf(“G G R Y G G R Y G G R Y G G R Y
G R G R\n”);

for(seq=0;seq<8;seq++)
{

c=(seq&1);b=(seq&2)>>1;a=(seq&4)>>2;
green_bl=and3(not(a),b,c);
green_bs=or2(and3(not(a),b,not(c)),and3(not(a),not(b),c));
red_bs=or2(a,and3(not(a),not(b),not(c)));
yellow_bs=and3(not(a),b,c);
green_dl=and3(a,b,c);
green_ds=or2(and3(a,b,not(c)),and3(a,not(b),c));
red_ds=or2(not(a),and3(a,not(b),not(c)));
yellow_ds=and3(a,b,c);
green_fl=and3(not(a),not(b),not(c));
green_fs=and2(not(a),not(b));
red_fs=or2(a,and3(not(a),b,c));
yellow_fs=and3(not(a),b,not(c));
green_hl=and3(a,not(b),not(c));
green_hs=and2(a,not(b));
red_hs=or2(not(a),and3(a,b,c));
yellow_hs=and3(a,b,not(c));
walk_ns=green_bs;
stop_ns=or3(and3(not(a),not(b),not(c)),and3(not(a),b,c),a);
walk_ew=green_ds;
stop_ew=or3(not(a),and3(a,b,c),and3(a,not(b),not(c)));
printf(“%d %d %d %d %d %d %d %d
%d %d %d %d %d %d %d %d %d %d
%d %d\n”,
 green_bl,green_bs,red_bs,yellow_bs,
 green_dl,green_ds,red_ds,yellow_ds,
 green_fl,green_fs,red_fs,yellow_fs,
 green_hl,green_hs,red_hs,yellow_hs,

 walk_ns,stop_ns,
 walk_ew,stop_ew);
 getch();
 }
 return;
 }
 int and2(int x,int y)
 {
 return(x && y);
 }
 int and3(int x,int y,int z)
 {
 return(x && y && z);
 }
 int or2(int x,int y)
 {
 return(x || y);
 }
 int or3(int x,int y,int z)
 {
 return(x || y || z);
 }
 int not(int x)
 {
 return(!x);
 }

TRAFFIC.C

Table III
Execution Results of Software Program

SIG-B SIG-D SIF-F SIG-H WALK(N-S) WALK(E-W)

G G R Y G G R Y G G R Y G G R Y G R G R
0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1 0 1
0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1
0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1
0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1
0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0
0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0
0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 1
Note. The first column under G (green) in each group of four signals indicates the

turn signal, while the next three columns under GRY indicate signal for the straight
traffic.

connected
to green
signal of
the next
state (refer
Table I).

T h e
traffic sig-
nals can
also be
controlled
manually,
if desired.
Any signal
state can be
established

by entering the binary value correspond-
ing to that particular state into the parallel
input pins of the 3-bit counter. Similarly,
the signal can be reset at any time by
providing logic 0 at the reset pin (pin 1)
of the counter using an external switch.

A software program to verify the
functioning of the circuit using a PC
is given below. (Source code and execut-
able file will be provided in the next
month’s EFY-CD.) When executing the pro-
gram, keep pressing Enter key to get the
next row of results. The test results on
execution of the program is shown in Table
III.

This circuit costs around Rs 125.

