eProjects

By Dieter Holzhduser
{Germany)

ATmega on the Internet (1)
Using Raspberry Pi as a network gateway

Communicating with a microcontroller over the Internet is easy. All you need is a
networked PC or smartphone, a local area network (LAN)Y, and another computer
connected to the ATmega32 over a serial link. The basis for this series of articles is
a system in which a Fritz!Box router provides the LAN, and a Raspberry Pi is used
as a network gateway. In the first instalment we present the basic concept and

describe some typical hardware.

Figure 1.
A Raspberry Pi in practical
use.

The Raspberry Pi, which is roughly the size of a
credit card, is a simple Linux PC, The "Model B”
version, with 512 MB of RAM and an Ethernet
port (see Figure 1), costs about 40 dollars. A
monitor can be connected to its HDMI output,
and its two USB 2.0 ports are used for a keyboard
and a mouse, Power is supplied to the Raspberry
Pi through a Micro USB connector. With a power
consumption of less than 3 watts, it's no power
glutton, so it can be left on all the time. After all,
there wouldn't be much point in using a com-
puter that is only occasionally powered up as an
access point for the Internet.

0S aspects

The current OS5, Raspbian wheezy, can be down-
loaded free of charge from the Internet as a disk
image [2]. However, it can also be obtained as
a pre-installed version on an 8-GB MicroSD card

16 | March 2014 | www.elektor-magazine.com

with SD adapter, with about 6 GB unused.

It's really amazing that a computer this small can
support a graphical user interface. However, in
this project we use the command line interface
instead. The software behind this is called a shell.
You can access the command line interface of the
shell by launching LXTerminal or by exiting the
graphical user interface. If you don’t want to use
the graphical user interface at all, you can alter
the configuration settings with the raspi-config
utility to prevent the GUI from autostarting after
a system boot. To run this utility using the com-
mand line interface, enter:

sudo raspi-config

The prefix sudo allows regular users to use sys-
tem calls normally reserved for the root user
{Superuser).

The procedure is largely self-explanatory. In the
line:
boot_behaviour Start desktop on boot?
use the Tab key to set the focus on <Select>,
press Enter, and then give the appropriate answer
to the subsequent question:

Should we boot straight to desktop?
<Yes> <No>

If you say <ves>, the graphical user interface will
appear every time after booting {without login);
If you say <No>, the command line interface will
appear (with login). If for some reason you want
to use the graphical user interface later on, you

can launch it manually with startx. Communica-
tion between the shell and the user’s terminal
device, which is also called the console, consists
of sending characters or character strings back
and forth. It doesn‘t matter where the terminal
device is located or how it is connected to the
computer.

The abbreviation commonly used in Linux for
a character-oriented terminal device is tiy,
which is short for “teletypewriter”). In Linux
this means not only the terminal itself, but also
the computer port to which the terminal can
be connected.

Serial interface

The local terminal, consisting of the keyboard and
monitor connacted to the Raspberry Pi, does not
need a physically accessible interface, However,
the Raspberry Pi does provide a simple serial
interface. It is brought out to the twe-row pin
header and configured such that after booting,
a user can log in to a shell using a terminal con-
nected to the serial port.

However, this is not what we want. Instead, we
want to use this interface to allow an ATmega32

ATmega on the Net

to communicate with a terminal. Two things are
necessary for this, The first is to eliminate the
configuration of the serial interface as the con-
sole. The second is to convert the Raspberry
Pi into a terminal that uses this interface. This
means that all keyboard inputs to the Raspberry
Pi are passed on directly over the interface and
all received characters are output to the monitor.
To get rid of the existing configuration of the
serial interface, you have to edit two text files.
Open the first file by calling the command line
editor nano:

sudo nano fetc/inittab

At the end of the displayed text there is a line
with the following {or similar) content:

T@:23:respawn:/sbin/getty -L ttyANAD
1152889 vt1a8

Place a hash mark {#) at the start of this line to
change it into a comment. After this change, the
serial interface {the internal device ttyAMAD) will
ignore console input and output. Save the edited
file and exit the editor.

Even with this change, the boot-up data is still

Ve
@
O LT
AREF Voo AVCC
= i | '
M eoiancy) it permosca | | i l
] PAD[.nncn PCETOEC] 28 | P Raspbarty P |
anl a7 |26 123 (21 018 (17 15 1311 0 (T g6 (3
ar | AR el | S5 30666006%0006] |
Y [e, I looococoscscooo ||
o | AR PEMsIF | PPy PrapYs FracTy ey PTREPY P PR PRI PR |
] BASIADES) PCHTLK) P | |
] pasiancs) roigsna) | L e e I I
Y pariancy) ropseL
— 1 ATMEGA2Z-P “
~raopxeriy ROD(RADY
4 PEA[TH) POH(TED
R4 Ri L pBzNT2izing PD2(INTD)
= yoe - 4 FB3|OCARINT FOINT
5 K1 = : PB4{ES) PO4{OC1B)
PBS|MOSI| POS0C14)
L 215 o Hieo 1 pssmiso) poegcen|
4 O O 3 SCH d PBTSCK} POTIOCI]
—Elo ot gRESET GND XTALI XTALZ GHD
LED1 [I E CERE
: I8P]
GNO TUD"
| 13213 - 1

www.elektor-magazine.com | March 2014 | 17

Figure 2.

The serial link between
the ATmega32 and the
Raspberry Pi.

Projects

Listing 1: suidemol.c

#include <avr/interrupt.h>
#include <avrfio.h>

#define
#define
#define
#define

BAUDCODE
INITLED
TOGGLELED
ISLEDON

12
DDRB
PORTE
PORTB

1
2
3
4
5
&
7
8
g

unsighed int cycle 500
clock = 8;
old o,
chr

ontxt ||
offtxt []

char * ptxt;

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
28
30
31
32
33
34
35
35
37
38
35
40
41
42
43
44
45
46
47
48
49
50
51
52

unsigned long

unsigned =
unsipgned

unsigned

long
char

char
unsigned char

unsigned

ISR { TIMERG®_COMP_wvect){
if { !{clock++ %
TOGGLELED
if (ISLEDOM) ptxt
UDR = *ptxt ;

cycle)

ISR { USART_TXC_wvect } {
ptxt++;
if (*ptxt |

UDR

a)

ISR { USART_RXC_wvect) {
chr UDR;
if (clock - old
old = clock;
if (chr ==

> 5@} {

‘5 cycle

int main{void) {
TCCRO OxB3;
TCCRS TCCRE | @x@2;
JCRG 124,
TCNT® = 0;
TIMSK |= 1<<OCIEG;
LUBRRH
UBRRL
UCSRE
sei{);
IMNITLED
while (1) ;
return 9;

UCSRB

18 | March 2014 | www.elektor-magazine.com

& 1<<4

"WrL|5 #k% g
"\rl|5 ;

ontxt; else ptxt

else if (chr == 17) cycle

{unsigned char) (BAUDCODE »> 8],
{unsighed char) BAUDCODE;
{L<<RXEN)

// 4.808 Baud @ 1 MHZ
DDRB | 1<<4;
PORTE * 1<<4;

//Interrupt Service Routine Timer

)R

offtxt;

//Interrupt Service Routine Transmit

*ptxt]

//Interrupt Service Routine Receive

5003

160;

// Init Timer CTC-Mode
//Frescaler: 1 MHz: 8
ffCompare 1 WMHz: 124;
//TimerCounter on @
ffenable CTC-Interrupt Timere
//Init USART

125 kHz, 0x02; 16 MHz: 64
15 MHz: 249

250 kHz, @x03

| (1<<RXCTE) | (1<<TXEN) | (1<<TXCIE) ;

{{Enable Interrupts

sent to the serial interface, To prevent this, call the editor
again with the second file:

sudo nano /booct/cmdline.txt

In the displayed text

dwc_otg.lpm_enable=8 console=ttyAMAD,115200
kgdboc=ttyAMA®,115280 console=ttyl root=/dev/
mmchlk@p2 rootfstype-extd elevator=deadline
rootwait

delete the two references to ttyAMAD. The modified text is:
dwe_otg.lpm_enable=a console=ttyl root=/dev/
mmcblk@p2 rootfstype=extd elevator=deadline
rootwait

Save the edited file and then restart.

The Raspberry Pi needs a terminal emulator program in
order to act as a terminal. One option for this is the pro-
gram picocom. First you have to download and install the
program. The command for installing the program is:
sudo apt-get install picocom

The installation process is automatic. You don’t have to do
anything else. Ta launch the program, type:

picaocom —b 4806 /dev/ttyAMAD

Here -b 4800 sets the baud rate and /dev/tfyAMAQ is the
device file for the serial interface. You don't have to type
this command again every time you need it. Instead, you
can use the Up and Down arrow Kkeys to scroll through
previously entered cammands and retrieve them to the
command line,

For your first test, connect pin 8 {TxD) and pin 10 {RxD)
together on pin header P1 {see Figure 2). Now the charac-
ters you type on the keyboard will appear on the monitor.
To exit the terminal emulator program picocom, press the
key combination Ctrl-A-X.

ATmega32

In order for two devices to communicate over a serial inter-
face, they must have the same transmission parameter set-
tings. The only configurable parameter for the simple serial
interface of the Raspberry Pi is the baud rate, The frame
format and the mode bits are permanently set to eight data
bits, no parity, one stop bit and no handshaking. The pico-
com program and the serial interface of the ATmega32 are
preconfigured with these settings. The only parameter you
need to set in software is the baud rate, and pins 14 {RxD)
and 15 (TxD) of the ATmega32 must be configured for the
serial interface.

AziTizzr ot

!

7-in-Oneders
of Picoscope

1. Oscilloscape
2. Spectrum apalyzer
3. Function generator
f

/

4. AWG
5. Logic analyzer
6. Serial protocol analyzer
/. Automatic waveform test

www.picotech.com/P5240

www.elektor-magazine.com | March 2014 | 19

eProjects

Figure 3.
The ATmega32 on a piece of
prototyping board.

For experimenting, it's helpful to mount the
ATmega32 on a piece of prototyping board {see
Figure 3). It's ready to run after an external
circuit or signal is connected to the reset input.
The device is factory-configured to operate from
its internal clock source, which runs at 1 MHz.
A programming device, such as the AVRISP mKII,
can be connected to the 6-pin pin header K1.
Information about setting up a2 development envi-
ronment can be found on the Internet [3]. Con-
nect R1 and C1 to the Reset input.

Connect the TX and RX pins of the microcontrol-
ler to the corresponding pins of the 26-pin pin
header P1 on the Raspberry Pi board. The voltage
divider formed by R2 and R3 ensures compliance
with the 3.3-V signal level regquirement of the
Raspberry Pi board. Check carefully to ensure
that you have made the right connections, since
the Raspberry Pi can be permanently damaged
by incorrect connections.

Connect an LED te pin 5 {PB4) of the ATmega32

to allow program activity to be observed (e.q. the
activity of the simple C program described below).

Demo program suidemol.c

The suidemoli.c program shown in Listing 1 is
intended to be used as a demo and for experi-
menting. It consists of the main function, which
contains the main loop, and three interrupt ser-
vice routines (ISRs).

The program causes the LED to blink at two dif-
ferent rates. A simple user interface is imple-
mented in the form of characters that are output
and displayed on the Raspberry Pi monitor. They
show the state of the LED, You can change the
blink rate by pressing a key on the keyboard.
In lines 40 to 44Timer0 is initialized to cause
the ISRTIMERQ_COMP_vect to be called at a fre-
quency of 1 kHz. The ISR increments the variable
clock, which acts as an internal clock. In lines 18
and 19, the variable cycie is used to derive the
LED blink rate from the value of clock. On each
state change the pointer ptxt is set to the {ext

Web Links

[1] Author’s website: www.system-maker.de {in German)

[2] Raspian wheezy download: www.raspberrypi.org/downloads

[3] Information about IDEs and programmers: www.system-maker.de/avr.html (in German)
[4] ATmega32 data sheets: www.atmel.com/devices/atmega32.aspx

[5] Elektor web page for this praject: www.elektor-magazine.com/130213

20 | March 2014 | www.elektor-magazine.com

string to be transmitted over the serial interface (line 20)
in order to display the new state of the LED an the monitor.
Transmission is initiated by writing the first character of the
text string to the register UDR (line 21).

The ISR USART_TXC _vect is responsible for sending the
rest of the characters. It is called each time the transmit
shift register becomes empty. That is why this ISR can only
transmit the second and subsequent characters. The ISR
stops transmitting when the null character marking the end
of the string is detected (line 27).

The ISR USART_RXC_vect is called each time a character
from the terminal keyboard has been received completely.
First the register UDR must be read out {line 31). Key-
strokes that send more than one character can be recognized
from the arrival rate of the characters. However, character
sequences of this sort are not used in this program. For this
reason, if the time since the last [SR call when a new char-
acter arrives is distinctly less than the usual time between
keystrokes, the character is discarded (line 32). Only keys
1 and 5 are significant, They change the LED blink rate by
altering the value of the variable cycle in lines 34 and 35.

The serial interface must be initialized before it can be used;
this is done in lines 46 to 48, The baud rate is set by writ-
ing @ number that depends on the clock frequency (see
the ATmega32 data sheet [4]) to the registers UBRRH and
UBRRL. The maximum supported baud rate with a clock fre-
quency of 1 MHz is 4,800. The interrupt enable bits for the
transmit and receive functions must also be set. The bits of
the Status and Control register UCSRC are initialized auto-
matically after a reset to correspond to the frame format.

The endless loop in line 50 keeps the program active. The
program is controlled exclusively by the Timer0 events and
the terminal keyboard.

The serial user interface only responds to keys 1 and 5, It
also shows the current LED state in a single line on the ter-
minal monitor. When the LED is lit, the line reads:

]_|5 e

Now we have effectively implemented a remote control mech-
anism that allows the ATmega32 to be controlled over a
serial interface.

In the next instalment of this mini-series, we show you how
to use this combination of a Raspbherry Pi computer and an
ATmega32 in a local area network and how it can be con-
trolled over the Internet fram anywhere in the world.
1302131

ATzt

8 CHANNEL

PC Oscilloscope for just £1395
. High resolution « USB pcﬁvered
e Deep memory /

G TR

UL N
Uy LA
[Wil

i 1
RAGREE RIS
3) R R
\ f'n\

r'

- - (0 o a -

= e BT

INCLUDES AUTOMATIC MEASUREMENTS,
SPECTRUM ANALYZER, SDK, ADVANCED TRIGGERS,
CCLCR PERSISTENCE, SERIAL DECODING {(CAN, LIN,

RS232, I2C, I?S, FLEXRAY, SPI}, MASKS,
MATH CHANNELS, ALL AS STANDARD,
WITH FREE UPDATES

12 bit « 20 MHz » 80 MS/s
256 MS buffer * 14 bit AWG

www.picotech.com/PS240

www.elektor-magazine.com | March 2014 | 21

