
26 March & April 2017 www.elektormagazine.com

The GUI software HHGui is a variant of
the HHemu program I wrote for the OBD2
handheld emulator [1] which is a sort
of Swiss army knife tool for developers
working with the OBD2 analyzer ‘NG/
DIAMEX Handheld Open’ (HHOpen). This
unit is a handheld OBD2 diagnostic tool

little unconventional and shows how firm-
ware originally written for a microcon-
troller can be ported to a Raspberry Pi or
PC, ideally without making any changes
to the firmware source code.
HHEmu was originally conceived as a
pure development tool to test new ver-

published in September 2009 in Elektor
Magazine [2]. The OBD2 analyzer NG
employs the DIAMEX DXM OBD2 mod-
ule [3].

The development process
The software development process is a

OBD2 Handheld using a
Raspberry Pi
With new diagnostic software

By Thomas Beck (Germany)

The Pi-OBD-HAT is an off the shelf add-on board for the Raspberry Pi which converts the tiny computer into
a dedicated OBD2 diagnostic tool. One disadvantage was the need of a terminal program running on a PC for
control. A much more convenient and neater solution is provided by the HHGui OBD2 diagnostic software.

PROJECTHOMELAB

www.elektormagazine.com March & April 2017 27

sions of the AVR microcontroller firm-
ware for the OBD2 analyzer on a PC with-
out the need to plug it into an OBD-
equipped vehicle. In addition to the firm-
ware HHEmu contains an OBD2 emulator
which supplies simulated OBD2 control
unit data to the firmware via a simulated
DXM OBD2 module.
The next step in the development process
HHEmu was provided with a serial inter-
face to a PC. Together with a Bluetooth
expansion board published in April 2010
[4] this gave the OBD2 analyzer NG a
great deal of added flexibility. The firm-
ware running on a PC within HHEmus
can control a real NG analyzer and its
DXM module using a serial interface to
the Bluetooth adapter with the Bluetooth
extension. This makes it possible to test
new firmware versions on a real vehicle
without first flashing the firmware into
the OBD2 analyzer. This was a real mile-
stone in the development process! In
the meantime HHEmu has become the
standard diagnostic software for DXM-
based diagnostic interfaces. In addi-

tion the OBD2 emulator in HHEmu
can now act as a data generator

to test OBD2 diagnostics tools
produced by other manufactur-
ers or for the development of
new OBD2 software. As well
as the improved test possi-

bilities for firmware develop-
ment there are also other ben-
efits of porting to a PC. With

each future firmware update the
diagnostic software automati-
cally receives the functionally
identical update.
Now HHEmu has been ported

to the Raspberry Pi. After all
the changes necessary for oper-

ation with the Pi-OBD hat and the
removal of any OBD2 analyzer-NG

specific menus the first version of HHGui
is ready for publication.

Operational modes
We can say, because of its development
path that HHGui is essentially OBD2 diag-
nostic software with a user interface that
mimics the look of the OBD2 analyzer
NG as well as internally running its firm-
ware adapted to the PI-OBD module. The
current range of the firmware functions
available are given in the Table.
HHGui presents the OBD2 user menus
and data on a simulated LCD display
scaled to the larger graphic display of
the RPi. This is a compromise so that in

the OBD2 port we can read emission-rel-
evant information and trouble codes and
partially delete them. This information is
mainly generated by the vehicle’s ECU.
Vehicles with automatic transmission
can also produce OBD2 trouble codes
from the Power-train Control Module.
Less often the vehicle will be fitted with
additional control systems or even mul-
tiple ECUs in the case of hybrid vehicles.
General settings such as automatic door
locking or inhibiting the warning gong
sound for seat belt reminder cannot be
made via the OBD2 connector. With the
exception of the Malfunction Indicator
Lamp (MIL) none of the other fault indi-
cator lamps on the instrument cluster or
the service warning lamp or service inter-
val can be reset. These actions can only
be performed using the manufacturer’s
diagnostic equipment which is usually
specific to the vehicle model.
That may seem a little disappointing at
first. The advantage of this manufacturer
standardized OBD2 diagnostics is that
now after 20 years since its introduction
in the US (and since the year 2000 for
petrol-powered vehicles in Europe), it
works with almost every vehicle. Since
2008 the proliferation of different proto-
cols for transferring OBD2 data has been
drastically reduced so that now only the
CAN protocol can be used.
Take a closer look at all the available
OBD2 sub-functions you will find an
incredible amount of sensor information,
counter values and other measurements
(altogether more than 100) that’s sure

addition the official 7” touchscreen rec-
ommended for the RPi it also supports
displays as small as 320x240 pixels. A
modification of the Pi-OBD module is nec-
essary as described in the first project
update of the Labs-project [5].
The second level of functionality imple-
mented in HHGui is the OBD2 simula-
tor which can be used to represent the
Pi-OBD module and up to eight config-
urable OBD2 controllers. This feature
allows you to test the full range of soft-
ware functions without the need for a
Pi-OBD module or vehicle. Plugging into a
real vehicle will also not give you access
to all the possible OBD2 functions and
subfunctions because many of these are
exclusively related to the type of engine
fitted (i.e. petrol (gas) or diesel powered
vehicles). Another bonus is that this sim-
ulator is completely harmless, there’s no
chance of accidentally deleting any of the
vehicle’s OBD2 data. The range of OBD
functions provided by the simulator is
identical to the range of functions in the
firmware. Commands to control the OBD2
simulator entered via the keyboard are
described in the Labs HHEmu project [1].

What’s possible using OBD2
diagnostics?
So returning to the main functions of the
OBD2 diagnostic software, what can we
expect to achieve with the services avail-
able via the OBD2 interface?
When you take a close look at the ISO
15031-5 [6] specification (or the identical
SAE J1979 [7]) it becomes clear that via

stone in the development process! In
the meantime HHEmu has become the
standard diagnostic software for DXM-
based diagnostic interfaces. In addi

tion the OBD2 emulator in HHEmu
can now act as a data generator

to test OBD2 diagnostics tools
produced by other manufactur
ers or for the development of
new OBD2 software. As well
as the improved test possi

bilities for firmware develop
ment there are also other ben
efits of porting to a PC. With

each future firmware update the
diagnostic software automati
cally receives the functionally
identical update.
Now HHEmu has been ported

to the Raspberry Pi. After all
the changes necessary for oper

ation with the Pi-OBD hat and the
removal of any OBD2 analyzer-NG

specific menus the first version of HHGui

The OBD2 functionality of HHGui

HHGui supports the OBD2 services contained in ISO15031-5. A more detailed
description can be found on the project page [5], for more on the sub-functions
refer to [6], [7] or [8]. The range of supported services will depend on the vehicle
type and its OBD2 control unit. HHGui will interrogate the respective control unit
and display the supported sub-functions.

• Support for up to eight OBD2 ECUs (Electronic Control Units) according to ISO
15765-4 [9]

• OBD2-Service 0x01: Read Live or Current Data; support also for Parameter
Identifier (PIDs): 0x00...0x60, 0x70, 0x80, 0x8D sub-functions

• OBD2-Service 0x02: Read Freeze Frame Data, supports PIDs as for Service
0x01

• OBD2-Service 0x03: Read confirmed Diagnostic Trouble Codes (DTC)
• OBD2-Service 0x04: Clear DTCs, stored values, MIL status, OBD2 monitor and

other data
• OBD2-Service 0x07: Read Pending DTCs
• OBD2-Service 0x09: Read Vehicle Information; support also for (InfoTypes):

0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0B
• OBD2-Service 0x0A: Read permanent DTCs

28 March & April 2017 www.elektormagazine.com

ings more of interest to the specialist.
A list of all the available Parameter IDs
(PIDs) is too long to include here. The
latest full-version of the official specifica-
tion is available at considerable expense,
as an alternative it’s worthwhile taking a
look at the Wikipedia entry [8].
Now we turn to a subject which is of more
interest to developers.

HHGui: Structure and Function

Functional Principle
The firmware is executed in a thread —
all inputs and outputs of the firmware are
processed and responded to in additional
threads. All of the microcontroller regis-
ters and interrupts need to be simulated.

Actual implementation
HHGui consists of six threads. Figure 1
is a simplified block diagram showing
the interaction between the threads.
The source files use different names as
a result of the program development his-
tory. The Pi-OBD module thread is called

Data supplied from the OBD2 interface
can also be raw sensor values without
any processing so we can read the actual
speed rather than the value displayed on
the speedometer.
There is also data that you might be
interested in reading which the manu-
facturer does not display such as oil tem-
perature or turbocharger boost pressure.
Engine load values may also be of use.
The average user might also be inter-
ested to know the state of readiness of
the vehicle for its next inspection and
test (the annual MOT in the UK, or vehi-
cle safety inspection in the US). To get
this information it’s necessary to run all
the OBD2 test programs (OBD2 moni-
tors) at least once after fault conditions
have been erased. This condition can be
checked in HHGui when in Inspection/
Maintenance readiness menu the status
of all the OBD2 monitors is displayed as
‘… monitoring ready: YES’.
In addition to this easily understandable
OBD data we also have more esoteric
information such as lambda probe read-

to make you want to explore further.
Apart from the sensor information you
would expect to have access to from the
Engine Control Unit you can also read
data originating from other equipment
on the vehicle such as the brake control
module.
In addition to the raw OBD2 data some
values undergo processing before they
are displayed on the instrument panel.
Some examples are:
• value smoothing (outside air tempe-

rature, fuel gauge and generally any
instrument with a pointer driven by a
stepper motor);

• values with a plateau function with
a limited range of interest (coolant
temperature);

• values with added offsets, to provide
a margin for error and ensure that
displayed values will not allow the
driver to unknowingly exceed any
legal restriction or simply to com-
ply with the manufacturers recom-
mended limits (speedometer, engine
RPM).

The PI-OBD-HAT [10] from Diamex turns a Raspberry Pi into
an OBD2 diagnostics adapter. Fitted with the 7” touch screen
you have a handy and powerful stand-alone diagnostic tool for
vehicles with an OBD2 interface. The RPi and its display are
powered directly by the vehicle’s own 12 V supply.
Any of the Raspberry Pi variants can be used, but the RPi 2

Model B or RPi 3 Model B are preferred owing to their higher
processor speed. The PI-OBD hat uses just eight pins of the
RPi headers to provide power, connections for serial data inter-
face and reset signal to activate the PI-OBD bootloader. Serial

communication takes place using the TxD and RxD pins at
115,200 Baud with 8N1.

Plugging it all together
Plug the Pi-OBD hat into the Raspberry Pi headers. The 8-way
header socket plugs onto eight of the I/O pins along the edge

of the RPi board. The hat is held in place using the threaded
spacers and screws supplied.
The Raspberry Pi is powered by the vehicle battery via the
OBD2 plug. No other external power source is required unless

PI-OBD: The Hardware

www.elektormagazine.com March & April 2017 29

DxmThread and in the Firmware for den
OBD2 analyzer NG HhopenThread. The
shorter names are used in the following
description.
The NG-Analyzer firmware is executed
in the HhopenThread. This thread com-
municates with other threads in various
ways. Display data for the LcdThread is
passed via the SPDR register; RGB val-
ues for the LED back light are passed
to LcdThread via registers OCR1A/B/C.
The UDR0 register is used to pass AT
commands, OBD requests and responses
to the DxmThread. A firmware reboot is
made via the WDTCR register or from
MainThread of HHGui. Key presses from
the MainThread are received in the PINA
register. HhopenThread is controlled via
the Interrupt service routines for Coun-
terThread and DxmThread. Details are
given in the descriptions of the other
five threads.
The MainThread takes care of evaluat-
ing command line parameters, initializing
the serial interface, generation of other
threads and at the end of the program

you are testing or configuring the unit away from the vehicle
when it will then be powered via its USB connection. Power for
the 7” Raspberry Pi display is provided by the two-pin header
on the hat. The photo is from under the RPi with the OBD hat
fitted and the display PCB above. A description of the header
pin connections is printed on the PCB, be sure not to
get them mixed up!
There are two OBD2 ports on the PI-OBD hat, one
is suitable for ‘free’ cabling hookup and the
other with a sub-D connector cable.
A single-row 9-way header
plug (or socket) can
be used to connect
to Port 2 along the
board edge. The
port 2 connector
has the advantage
it can be plugged in
and out whilst the hat is
attached to the RPi but there is
also the risk of plugging it in the wrong
way round. Always pay attention to the
printed identification on the PCB! There
can be no confusion on port 1 because the
connector on the board has a detent position and the 9-pin sub-D
connector at the other end of the cable can only be connected
one way round. The flat band connector on this port must be
inserted before the hat is assembled onto the RPi, it can’t be
plugged in or withdrawn without first releasing the hat.

Fire it up
To begin using the PI-OBD HAT you will need some basic knowl-
edge of the Raspberry Pi environment, the use of Linux and
the software installation. For the purposes of configuration and
operation, unless you are using a touch screen with the RPi,

you will need to plug in a keyboard
and mouse.

The first exercise now is to enable the RPi’s serial interface but
a slightly different procedure is necessary for each different RPi
model and space limitations here makes it necessary to provide
this information via this link [10]. The unit will be ready for use
after a functional test using a terminal program.

PI-OBD: The Hardware

Figure 1. HHGui: Block diagram.

30 March & April 2017 www.elektormagazine.com

Timer2 which occurs every 10 ms. In
response the TIMER2_COMP_vect() Inter-
rupt Service Routine (ISR) is called every
10 ms. Apart from that it is used in the
MainThread in contact debouncing as
described earlier.
In the OBD2 software mode the Dxm-
Thread acts as an interface adapter
and just transfers the data unchanged.
The received data in the UDR0 register
(USART0-I/O data register) which may
be AT commands for the Pi-OBD mod-
ule or OBD2 requests, are sent to the
real PI-OBD module using the configured
serial interface. After each byte is read
the firmware is notified that the byte has
been sent via a call of the USART_UDRE_
vect()ISR indicating that next byte can
be written to the register. The reply from
the Pi-OBD module is received through
the serial interface and passed to the
firmware via register UDR0. The reply
(OK, Pi-OBD module prompt character >,
error or OBD2 data) is handled bytewise
in the same way by writing to the UDR0
register and a call to the USART0_RX_
vect()ISR tells the firmware that the
register has been read.
In OBD2 emulator mode the Dxm-
Thread emulates the Pi-OBD module
and one or more OBD2 controllers.
There is no connection to the real serial
interface.

(160204)

GTK3+ graphics library. The LED back-
light RGB values in the OCR1A/B/C regis-
ters define the displayed colors together
with the contrast setting (via the SPI
interface). The LCD in the OBD2 analyzer
NG uses an ST7565R display controller
so LcdThread contains an ST7565R sim-
ulator for the ST7565R commands used
by the Firmware.
The GtkThread is necessary because the
GTK3+ main loop (function gtk_main()
in the GTK3+ library) blocks the rest of
the gtk code. GTK3+ drawing functions
should only be called from inside Gtk-
Threads or in context of the GTK3+ main
loop. When LcdThread requests a display
update, it installs a callback-function,
which will be called later from the GTK3+
main loop. The GtkThread evaluates all
kinds of input events and generates the
Up/Down/ESC/OK button presses for
the HhopenThread or key input events
to control the OBD2 emulator.
The CounterThread is primarily used
to simulate the interrupt generated by

returns these resources. The thread also
evaluates key press information sent by
GtkThread in an endless loop. It is nec-
essary to differentiate between the keys
used to control the OBD2 simulator and
the Up/Down/ESC/OK keys used for the
HhopenThread. For these keys used by
the HhopenThreads it is necessary for the
firmware to ignore multiple contacts pro-
duced by contact bounce. The key press
must be present for 40 ms in the PINA
register in HhopenThread to be recog-
nized. This 40-ms window is measured
using the CounterThread. Keys used only
for the OBD2 emulator produce changes
in settings in the DxmThread.
The loop that evaluates pressed keys ter-
minates when a watchdog reset is trig-
gered from HhopenThread (by holding
down the ESC key) or by terminating
HHGui using the Q key.
LcdThread evaluates the commands and
display data received via the simulated
SPI interface from the HhopenThread and
translates them into commands for the

FROM THE STORE
ªSKU 17944

PI-OBD-HAT Module (built and
tested)

ªSKU 17415
O�cial 7”- Raspberry Pi touchscreen

ªSKU 17631
Raspberry Pi 3

Web Links

[1] HHEmu: www.elektormagazine.com/labs/firmware-update-and-emulator-for-obd2-analyser-ng-wireless-obd2

[2] OBD2-Analyser NG: www.elektormagazine.com/magazine/elektor-200909/19167

[3] DXM-Modul (German!): www.diamex.de/dxshop/DIAMEX-DXM-OBD2-Modul

[4] Bluetooth for OBD-2: www.elektormagazine.com/magazine/elektor-201004/19297

[5] HHGui: www.elektormagazine.com/labs/obd2-for-raspberry-pi

[6] www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=66368

[7] http://standards.sae.org/j1979_201408/

[8] https://en.wikipedia.org/wiki/OBD-II_PIDs

[9] www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=67245

[10] Pi-OBD-HAT: www.elektor.com/pi-obd-hat-obd2-module-for-raspberry-pi

http://www.elektormagazine.com/labs/firmware-update-and-emulator-for-obd2-analyser-ng-wireless-obd2
http://www.elektormagazine.com/magazine/elektor-200909/19167
http://www.diamex.de/dxshop/DIAMEX-DXM-OBD2-Modul
http://www.elektormagazine.com/magazine/elektor-201004/19297
http://www.elektormagazine.com/labs/obd2-for-raspberry-pi
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=66368
http://standards.sae.org/j1979_201408/
https://en.wikipedia.org/wiki/OBD-II_PIDs
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=67245

