
www.elektormagazine.com September & October 2017 25

At approximately €25 / £10 / $20 (prices vary from country
to country) the cost of the new Raspberry Pi Zero W may
be double that of its basic predecessor but the higher price
is fully compensated by its cordless WLAN and Bluetooth
capabilities, which are indispensable for so many projects.
Low-cost robotic, smart home and Internet of Things (IoT)
projects become feasible, thanks to the compact form factor
and very low power consumption of the Zero W. The sin-
gle-core Broadcom SoC BCM2835 chip is clocked at 1 GHz
(512 MB RAM). This makes the Zero W not as speedy as its
bigger brother Raspberry Pi 3 but nevertheless more than
adequate for most applications.
The British shop Pimoroni [1] sells to customers worldwide;
their prices are keen even when you include the postage
cost and delivery is snappy at the time of writing.
The Zero W is equipped with Mini HDMI and Micro USB On
The Go (OTG) ports; the single board device is supplied
with a bare (unpopulated) 2x20-pin (HAT-compatible) GPIO
interface. This needs a 40-way header to complete and for
that reason, if you don’t already have something suitable in
your store cupboard, it’s worth ordering the corresponding
accessory parts for your Pi at the same time (dealers offer
these as an adapter kit).

Installing the operating system
and what comes next
Having got hold of a Zero W, together with all the nec-
essary adapters and a power supply (see the shopping
list panel for the necessary accessories), we now need to
install the operating system on a micro SD card with at
least 8 GB of memory.

To do this we download the current file Image of Raspbian
Jessie with Pixel from [2]. For transferring the Image onto
an SD card we need a card burner tool such as Etcher,
which can be downloaded at [3] (Figure 1). Incidentally,
a key advantage of this program is that it is available for
all operating system platforms and the downloaded Image
does not have to be unpacked. Having installed and started
the program, we next select the appropriate Image and
transfer it then to the chosen SD card.
After this we insert the SD card into the Zero W, we use
an adapter to connect the monitor (using HDMI) together
with a keyboard and a mouse (using USB) and finally con-
nect up the power supply. Take special care here: the con-
nector for this is the right-hand one of the two Micro USB
sockets, assuming you have the board horizontal in front
of you, with the SD card on the left-hand side (Figure 2).
The Raspberry Pi Zero W should now start up in the Pixel
desktop of the Raspbian operating systems. And with that,
the task of installing an oven-ready Linux operating system
on this super-small computer is complete.

Small but Perfectly Formed:
the Raspberry Pi Zero W
First steps for the newest arrival in the Pi family

By Markus Ulsass (Germany)

The mini version of the Raspberry Pi with the suffix
Zero has been with us since the end of 2015.
February 2017 saw the advent of the Zero W (W
for ‘wireless’) model, enhanced with WLAN and
Bluetooth capabilities.
In this article, we examine how to get started
with the new board started, what it does, and the
advantages of adding wireless technology to this tiny
single-board computer. As a practical example, we’ll
hook up a temperature sensor and distribute the
data by WLAN using the MQTT protocol.

Figure 1. Etcher is an SD Card burning tool for loading the Raspbian image.

26 September & October 2017 www.elektormagazine.com

Listing 1. Flashing LED Python script.

#!/usr/bin/python
#LED_Blink.py
import RPi.GPIO as GPIO #link GPIO library
import time #library required for Sleep

LED = 14
GPIO.setmode(GPIO.BCM) #use BCM-GPIO labels
GPIO.setwarnings(False) #disable warnings
GPIO.setup(LED, GPIO.OUT) #use LED pin as output
PAUSEON = 1.0 #On time
PAUSEOFF = 1.0 #Off time

while True:
 GPIO.output(LED, GPIO.HIGH) #LED on
 time.sleep(PAUSEON) #On time
 GPIO.output(LED, GPIO.LOW) #LED off
 time.sleep(PAUSEOFF) #Off time

shopping list

board layout is still incorrect. Call up sudo raspi-config once
more, select 4 Localisation Options and this time select I3
Change Keyboard Layout. There you may choose Generi-
sche PC-Tastatur mit 105 Tasten (Intl), in the next window
Andere, then Deutsch and confirm with <OK>. Move the
cursor to Deutsch – Deutsch (T3) and confirm once more
using the Enter key. In the next window confirm again
with <OK> or <Nein> as appropriate and finally return to
the main menu. When you leave this using <Finish>, you
enter a z on the Console and should find it set up for the
German keyboard layout. Obviously you can follow a sim-
ilar process for any other languages and regional settings
that you wish to specify — the above information is given
with Elektor Magazine’s wide distribution in Europe in mind.
As the Zero W has a default password of raspberry for the
user pi, it’s vital that you change these settings. This is
done using sudo raspi-config and the entry 1 Change User
Password. Provide a new password and make a written note
of this somewhere.
In order to identify your Zero W subsequently on the net-
work unambiguously by name, you should change this (the
default is raspberrypi). To do this you edit the relevant entry
in two text files, using the nano text editor. First enter sudo
nano /etc/hostname and in the text file replace the entry
raspberrypi with zerow. Save this with CTRL+O, Enter and
finalize with CTRL+X. Next you open the second file with
sudo nano /etc/hosts and search for the last entry with
127.0.0.1. Here too you again replace raspberrypi with
zerow. Now save it again using CTRL+O, Enter and final-
ize with CTRL+X.

External connections
In order to be able to link our Zero W to a local network
using Wi-Fi, we now have to enter the data for the WLAN
router (SSID, password). To do this click on the symbol with
den two vertical lines and red crosses at upper right on the
navigation bar (Figure 3). Choose the correct access point,
enter the password and the Raspberry Pi Zero W should
connect to the WLAN.
With a fresh Image it makes sense update the package

Fine tuning
If you now open a Terminal (CTRL+T or click on the Monitor
icon in the upper navigation bar), you’ll see that the default
language, regional settings and keyboard layout assume that
you are located in Britain. If you need to change these, type
sudo raspi-config into the Terminal. This opens the Rasp-
berry Pi Software Configuration Tool, in which you use the
cursor to select (only if necessary) 4 Localisation Options
and press Enter. If, for example, you are in Germany, just
select I1 Change Locale de_DE.UTF-8 UTF-8 with the space
bar and use the Tab to select <OK>. In the following win-
dow set de_DE.UTF-8 as the Default locale for the system
environment and confirm once more using <OK>. You can
now restart the Pi Zero W using sudo reboot.
Your system’s default language is now German but the key-

Figure 2. Connections for the Raspberry Pi Zero W, with the SD card at far left.

Figure 3. Before (left) and after (right). The Zero W should link up to the
WLAN following configuration. Frequently you’ll see additional information
when you move the mouse over the symbols.

www.elektormagazine.com September & October 2017 27

mand line in Terminal with python LED_Blink.py. The LED
should now flash once a second.
We close the program with CTRL+C.

Temperature measurement with the DS18B20
A popular and simple-to-connect digital temperature sen-
sor is the DS18B20 from Maxim Integrated. First we shut
down the system in order to link the circuitry safely to the
breadboard and the Zero W.
The left-hand Pin (with the part number facing upwards)
of the DS18B20 is linked to the 3.3 V power supply of the
Zero W, the right-hand one to a Ground Pin. A jumper wire
goes from the center (data) Pin to GPIO4. Lastly we pro-
vide a pull-up resistor between the data Pin and the supply
voltage to supply ‘parasitic’ power to the sensor (see the
Fritzing schematic in Figure 6).

sources and the system to the most recent version. We
do this with sudo apt update && sudo apt upgrade, again
in the Terminal. Confirm the question whether to proceed
with Y and wait a couple of minutes until all of the down-
loads are complete.

’Hello World’ ersatz with an LED
With these initial preparations finished, we will skip typing
‘Hallo World’ and instead get started by connecting some
simple hardware. First we need to solder the 40-pin header
to the Zero W board, so that we can use some jumper wires
and breadboard for controlling an LED.
Before connecting the resistor and the LED we need to shut
down the Zero W completely, to avoid any short circuits
or other harmful effects that might occur when hooking
up hardware direct to the GPIO connections. We take care
of this using sudo shutdown –h now on the Console or by
clicking on the raspberry symbol on the navigation bar,
selecting Shutdown in the drop-down menu and choosing
Shut Down in the window that follows.
Forgoing the urge to type ‘Hello World’, we employ GPIO14
for control purposes along with a 470-Ω resistor and a
red LED. You can find the Pinout for the Zero W at [4] for
example. We connect GPIO14 to the resistor, attach this
to the anode of the LED and link its cathode to one of the
Ground Pins on the Pi Zero W. Figure 4 shows the Fritz-
ing sketch and Figure 5 demonstrates the assembly as it
actually appears.
For a program to make the LED flash we use a small Python
script (LED_Blink.py). It is printed out in Listing 1 but you
can also download it from the Elektor website at [5].
We can generate the code using once more the Editor nano
or alternatively using the somewhat more convenient Geany
(Menu ª Development ª Geany), which is included in the
Raspbian operating system by default. Note that in Python
you make indentations (as in listings for instance) using
the space bar, otherwise you’ll see the message Indenta-
tionError. After saving the program we call it up on com-

Figure 4. Fritzing sketch for hooking up the LED to the Zero W. Figure 5. Zero W cabled to the LED and resistor on the breadboard.

Figure 6. Wire connections for the DS18B20 temperature sensor.

28 September & October 2017 www.elektormagazine.com

Figure 9. Testing MQTT data transfer with our temperature sensors: local output (on the left), received data using MQTT (on the right). [Celsius = centigrade]

captured with our Raspberry Pi Zero W to other recipients.
For this we employ the streamlined MQTT protocol – a data
protocol for machine-to-machine communication. MQTT uses
a so-called publish/subscribe (pub/sub) system. With this
for instance sensors can ‘publish’ data on specific topics and
users known as Clients can sign up (‘subscribe’) for these
topics and receive the data. The topics are memorized to
the data file using included slashes (an example would be
Apartment/Kitchen/Temperature) and even wildcards are
possible. Instead of files, however, we specify different
sensors or actuators.
Our own temperature sensor might transmit the tempera-
ture values it captures under the topic /home/outdoors/
temperature/sensor1, for which a Client (for example a
home automation system like openHAB, fhem or Node-
Red) has subscribed.
For MQTT we require an intermediary — called the Broker
in the MQTT jargon — that organizes the data flow between
sender and receiver. A popular Broker is Mosquitto, which
we install on our Zero W using sudo apt install mosquitto
mosquitto-clients.
To check that everything has been installed properly we
can test both transmitting and receiving data on the same
device. For this we first start up the Broker with sudo sys-
temctl start mosquitto on the Console. In order to activate
it automatically the next time we boot up we also enter
sudo systemctl enable mosquitto.
Next we’ll do some simulating on the Console with mos-
quitto_sub -h localhost -t /sensor1 (in the examples that
follow we will save ourselves some writing effort and abbre-
viate the Topic shown above): first an information sub-
scriber, who will later receive data (mosquitto_sub). First
of all nothing happens, because the system is of course
waiting for some data. We open a second Terminal window
and enter mosquitto_pub -h localhost -t /sensor1 -m “22”
(Figure 8). Doing this is the same as if we were transmitting

After making these connections and a quick check whether
the wiring is correct, we can restart our Zero W. But wait:
before we can use the one-wire temperature sensor, we
must first integrate (include) it with the system. We do
this using sudo raspi-config under P7 1-Wire, after which
we answer Yes to the question Would you like the one-wire
interface to be enabled? We then close the configuration
program and must reboot the system.
It’s time now to test whether the sensor has been embed-
ded into the system correctly and is connected (available).
For this we use the Terminal to switch into the cd /sys/bus/
w1/devices Folder and list its contents with ls. This should
make an alphanumeric combination appear that represents
our sensor.
We now navigate to cd <Sensor-ID> (in this set-up we’re
using cd 28-00000362eca7 in the relevant subfolder) and
read out the sensor’s current data using cat w1_slave,
which is displayed in two lines (Figure 7). Here t=22000
indicates a temperature of 22 degrees Celsius (centigrade).
With this now done, the sensor is configured correctly and
fully operational.

Sharing our temperature sensor
with the rest of the world using MQTT
There will be times when we wish to forward sensor values

Figure 8. Testing the MQTT function.

Figure 7. Testing the sensor after connection.

www.elektormagazine.com September & October 2017 29

chart of the current drawn by various types of Raspberry
Pi can be found at [6].
With such amazing benchmark parameters it’s not surpris-
ing that the board can be found only in limited quantities
at present. That was also the case with the first Raspberry
Pi and therefore we can only hope that the availability of
Zero W boards improves soon.

(160451)

Web Links

[1] https://shop.pimoroni.com/

[2] www.raspberrypi.org/downloads/raspbian/

[3] https://etcher.io/

[4] https://pinout.xyz/

[5] www.elektormagazine.com/160451

[6] https://blog.adafruit.com/2017/03/03/how-much-power-
does-pi-zero-w-use-piday-raspberrypi-raspberry_pi/

a temperature value (mosquitto_pub)
or respectively Publishing it to remain
in the MQTT vocabulary. Following this
a 22 should appear in the first window.
Our system for publishing the value
from our temperature sensor is now
up and running, and in a final step we
can automate it even further.

Transmitting temperatures
by MQTT
We employ a Python script for auto-
mating data transfer by MQTT. For this
we use a Library that we install using
sudo pip install paho-mqtt.
Our script (Listing 2) first imports
the required Modules and defines the
IP address of the computer on which
Mosquitto Broker is running (‘localhost’
for the local broker, actual IP address
for a remote MQTT broker).
The current temperature value is then
read out in the Function currentTem-
perature(). For the sensor ID given in
the sample code you need to enter the
ID of the sensor used of course. The
date read out is converted into a suit-
able value and displayed as the value
returned by the Function.
Following this a connection is made
to the local (or remote) MQTT broker
(mqtt_host). In the while loop the tem-
perature value (temperature) is then
polled every two seconds, displayed
on the command line and transmitted
to the MQTT broker under the topic /
sensor1.
After we have created the program
with an Editor or downloaded it
(according to your preference), we
open a Terminal and initiate it with
python DS18B20_MQTT.py. The com-
mand line should now report a connec-
tion between the MQTT broker and the local Zero W, followed
by a display of the current temperature value (Figure 9).
Now we generate a second Terminal screen and Subscribe
ourselves again by MQTT-Client to the Topic /sensor1 on
the local computer: mosquitto_sub -h localhost -t /sensor1.

And that’s still not everything…
With the Zero W the Raspberry Pi Foundation has delivered
a truly fantastic board, right on time for the fifth birthday
of the original Raspberry Pi. Who would have thought, five
years ago, that a Linux nanocomputer like this could be
possible, in such a tiny form factor and for such an afford-
able price?
The USB port, blocked on predecessor versions by the key-
board or the WLAN module, is now available for additional
functionality. Even the current consumption is very modest
and is already almost in the same league as self-powered
Internet of Things or Smart Home devices. A comparison

Listing 2. Python script for transmitting the temperature by MQTT.

#!/usr/bin/python
#DS18B20_MQTT.py
#Import of required module
import time, sys, os
import paho.mqtt.client as mqtt

mqtt_host = “localhost”

#read out current temperature
def currentTemperature():

 #enter correct sensor ID here
 file = open(‘/sys/bus/w1/devices/28-00000362eca7/w1_slave’)
 filecontent = file.read()
 file.close()

 #convert temperature value
 temperaturestring = filecontent.split(“\n”)[1].split(“ “)[9]
 temperaturevalue = float(temperaturestring[2:]) / 1000
 return(temperaturevalue)

def on_connect(client, userdata, flags, rc):

 print(“Connected with MQTT Broker (IP): “ + mqtt_host)

client = mqtt.Client()
client.on_connect = on_connect

client.connect(mqtt_host, 1883, 60)

client.loop_start()

while True:
 time.sleep(2)

 temperature = currentTemperature()
 print(“Current temperature: “ + str(temperature) + “ degrees
Celsius”)
 client.publish(“/sensor1”, temperature)

