ELLO again! While Mike O’Keeffe

takes a break from writing to dive
into the joys of parenthood, I am back
to fill his boots for a short time. This
provides an opportunity for a clean
break from Mike’s current subjects, so
we thought it would be a great time
to look into a topic that we have not
yet covered in PIC n’ Mix — namely,
‘digital signal processing’ — or ‘DSP’
for short. It’s a fascinating area with
some fairly complex mathematics
behind it, but we will focus on
practical applications, and have some
fun along the way. First though, here’s
a bit of background.

What is digital signal processing?
DSP is the process of taking a signal,
converting it into a digital form,
and performing signal processing or
analysis on that digital representation
of the original signal. The types of input
signals that are suitable for use with
DSP algorithms various enormously —
audio signals from a microphone, video
from a camera, vibration signals from a
sensor on a rotating machine shaft are
just some examples. You can even apply
DSP to slowly changing signals such as
daylight levels, or changes in heart rate
(very relevant in neonatal care.)

Real-world applications run from
the tuning of church bells during
manufacture to the detection of
planets orbiting distant stars. The
latter example has led to the detection
of planets outside of our solar system.

There are a number of signal pro-
cessing techniques that digital signal
processing encompasses, but the
technique which has fascinated the
author since university days is the
transformation of a signal from the ‘time
domain’ to the ‘frequency domain’.

So, what do these terms actually
mean? A signal whose value (amplitude
for example) is recorded over a period,
a time interval, is being represented in
the time domain. A signal whose value
is recorded over a range of frequencies
is being represented in the frequency
domain. You can see an example of
these two representations of the same
signal in Fig.1.

The example in Fig.1 is very simple,
but it clearly demonstrates how to

50

Practical DSP -Part 1

visualise the translation of a signal in
the time domain into the frequency
domain. Consider, however, a situation
where your input signal is a mix of many
different frequencies. Being able to
transform such a signal, in real time, into
its component frequencies enables some
very interesting processing capabilities.
Examples include looking for signals at
particular frequencies (akin to bandpass
filtering) or even simply visualising the
frequency components of a signal — such
as for an audio spectrum display on a
Hi-Fi amplifier.

The process of transforming a
signal from the time domain to the
frequency domain is called ‘Fourier
transformation’. The 18th century
French scientist and mathematician
Joseph Fourier invented this
mathematical system, long before its
practical applications were realised.

The computational method for
performing the transformation is called
the ‘discrete Fourier transform’ (DFT),
which deals with translating a finite
set of input signal levels (ie, a short
sample period) into a corresponding set
of frequency components. The actual
algorithm that is used within digital
systems is called the ‘fast Fourier
transform’ (FFT.) This is an algorithm
that yields the same results as a DFT,
but is highly optimised. Surprisingly,
the DFT algorithm was also discovered
long before any practical applications

Amplitude
154 1kHz signal in the time domain
1.04
. Time
0.5 (ms)
0 T T T T
_0.54 025 0.5 075 /1.0 125 1.5\ 1.75 2.0
—1.0-1
—1.51
Amplitude
1.2 1kHz signal in the frequency domain
1.04
0.8
0.6
0.4+
0.2
0 T T T T
900 950 1000 1050 1100
Frequency (Hz)

Fig.1. Two different ways of displaying the
same signal — a 1kHz sinewave graphed
in the time and the frequency domains

were available, and certainly well
before the advent of computers.

In this series of articles we will
be exploring the application of the
DFT to analogue signals. Many of
the applications of digital signal
processing require expensive digital
hardware and sensing systems, but
there are many practical applications
that can fall within a hobbyist’s
price range, while still being useful,
educational and fun.

The consequence of limiting the
cost of the system we create will
be resolution, signal frequency and
accuracy. There are however many
applications where those specific
limitations are perfectly acceptable.

Fast!
The mathematics behind FFT is
complex, and beyond the scope
of these articles. However, for our
purposes all we need to know is some
of the background and principles of
application. Fortunately, the engineers
at Microchip have created highly
efficient DSP software libraries that we
can access and build into our projects,
and Microchip provide these libraries
for free. If this series of articles whets
your appetite to dig deeper into the
theory there are a number of very good
university tutorial videos available for
free, on-line. An excellent introductory
overview is given here: https://youtu.
be/spUNpyF58BY. (Incidentally, the
same YouTube author also offers some
excellent introductions to calculus,
neural networks, machine learning
blockchain technology and other
important and topical mathematical
subjects — thoroughly recommended!)
The principle of operation is
straightforward enough: take a series
of samples of your data at regular time
intervals, and store them into a buffer.
Adjust those samples to match the
format required by your FFT function
and then call the FFT function to
transform the data from the time
domain to the frequency domain. Last,
examine the resulting data and take an
action on it. This workflow is shown
in Fig.2, highlighting what operations
occur within the hardware circuit, and
what occurs on-chip.

Everyday Practical Electronics, April 2018

{ Repeat for number of samples required]

Format

Signal Signal ADC
sample Conditioning conversion data

Interpret Take
2 > data » action

| Hardware

Software |

Fig.2. Overview of a DSP workflow (hardware and software)

The signal conditioning stage is a
combination of scaling your signal to
maximise the full range of the ADC
input voltage swing, and also some
low-pass filtering to minimise any high
frequency signals or noise, above our
sampling frequency, which many cause
unexpected ‘ghost’ signals to appear in
your data. This process is called ‘anti-
alias filtering’. We will explore the
effects of aliasing next month.

Processor selection
Let’'s now move away from the
theory and look at how we can
start experimenting with a practical
solution. Microchip offers a number
of processors with DSP-assisting
instructions built into the chip, but
it basically comes down to a choice
between three processor families: the
PIC32MZ, dsPIC30 or dsPIC33. The
PIC32MZ has the highest clock speed
and largest memory availability, but
we have selected the dsPIC33 family as
this range offers devices with dual-in-
line (DIL) packaging — ideal for simple
breadboard tests. Specifically, we have
selected the dsPIC33EP512GP502-1/SP,
a 28-pin DIL device, which is cheap,
readily available from distributors
such as Farnell (part code 2406557)
and has plenty of on-chip resources.
It is also compatible with the PICKIT-3
debugger/programmer, our favourite
low-cost interface. Here is a summary
of what you get from this processor, all
for the price of a pint of beer:

¢ 512KB Flash memory

¢ 43KB RAM

® 500,000 samples per second 12-

bit ADC
* CAN bus interface
¢ 21 GPIO pins

e DSP-instructions

¢ On chip high-speed oscillator
¢ 70MHz clock speed

¢ 3.0V to 3.6V operation

Plus, all the usual timers, PWM, SPI,
I?C interfaces that you would expect
from Microchip. The pin-out for this
device is shown in Fig.3.

With the on-chip high speed oscillator,
calibrated to within 1%, there is no need
to add an external crystal oscillator.
This is ideal, as it allows us to build the
test circuit on a breadboard, with just
a few decoupling capacitors and pull-
up resistor required to complete the
minimal hardware.

Software
Many microcontroller vendors
provide DSP algorithms within their
free software libraries, even for
processors that do not have special
DSP instructions in hardware.
Microchip provide two sources
of DSP libraries: one within the
Harmony software framework,
designed specifically for the
PIC32MZ family of processors,
and second, a separate dsPIC DSP
library, provided as part of the XC16
compiler, for the dsPIC family of
processors. Since we have selected the
dsPIC33 processor we will make use of
the latter. Do be careful not to confuse
the two should you search on-line.
We will build our software within
the MPLAB-X IDE, using the free
version of the XC16 compiler. With
the addition of the PICKIT-3 debugger/
programmer unit, this represents a
very low cost set-up. We will cover
the XC16 compiler installation next
month.

. Pins are up to 5V tolerant
MCLR

ANO/OA2OUT/RAD ——]

ANUC2INL+RAL —]
PGED3/Vger_/AN2/C2IN1-/SS1/RPI32/CTED2/RBO 4
PGEC3/Vrer+/AN3/OALOUT/RPI33/CTED1/RBL]
PGECUAN4ICLINL+/RPI3IRE2 —
PGEDL/ANS/CLINI-/RP35/RES ——]

8

Vgg =1

1
OSC2/CLKO/RA3 =

1
RP36/RB4 ——ll

12
CVRer20/RP20/T1CK/RA4 ==

PGED2/ASDA2/RP37/RB5

9
OSCL/CLKI/RA2 ===} (sP|C33EPXXXGP502
PIC24EPXXXGP202

AVpp

AVss

RPI47/T5CK/RB15
RPI46/T3CK/RB14
RPI45/CTPLS/RB13
RPI44/RB12
TDI/RP43/RB11
TDO/RP42/RB10

Vear

Vss
MS/ASDA1/SDI1/RP41/RB9
TCKI/CVRer10/ASCL1/SDO1/RPA0/TACK/RBS
SCK1/RP39/INTO/RB7
PGEC2/ASCL2/RP38/RB6

Fig.3. Pin out for our digital signal processing PIC of choice — the inexpensive 28-pin

dsPIC33EP512GP502-1/SP, a DIL device.

Everyday Practical Electronics, April 2018

Hardware design

Fig.4 shows the minimal components
required to start testing the DSP
capabilities of the dsPIC33 processor.
Three 100nF capacitors, a 10pF
tantalum capacitor and a 4.7kQresistor
complete the basic requirements.
Two LEDs have been added here to
aid debugging; half a dozen hook-up
wires need to be added to make this
breadboard good to go and ready to
connect to the PICKIT-3 debugger/
programmer interface.

If you decide to follow along with
us on this journey and are using a
similar breadboard setup, make sure
your breadboard is a good one, and not
something you have had in your shed
for the last ten years. While all the
high frequency signals are on-chip,
your ability to program the device
reliably may be impacted by old,
tarnished connections. Fault finding
these issues can be frustrating!

Fig.4. Our basic DSP hardware — details
next month

The PICKIT-3 also serves as a power
supply for the processor, freeing us
from the need to provide an additional
regulator circuit to the board. At a
push, however, the circuit will run
directly from a pair of AA cell batteries
because the processor can operate over
the 3.0V to 3.6V range.

As you can see from this board
layout, initially, we are not connecting
sensors. Our first software tests will
be made with pre-computed data
samples, allowing us to know exactly
what data is going into the FFT
function. This minimises the number
of things that can go wrong. We will
add sensor input via the ADC once the
basics are working.

Our aim in this series of articles is
to leave you with a reference hardware
design and source code that will
enable you to explore this fascinating
branch of electronics to your own
ends. We hope to hear from you on
your progress in DSP!

Next month

In Part 2 we will discuss building the
initial hardware and look at how to
incorporate the DSP libraries provided
by Microchip.

51

