
18 March & April 2017 www.elektormagazine.com

Home automation systems are enticing. There’s something
magical about having your lamps go on and off by themsel-
ves, a heating system that knows when you are at home, or
receiving a message when someone is at your door. There are
quite a few systems currently available, but most of them suf-
fer from the following shortcomings:

• They often work in only one direction – you can send com-
mands, but you never know whether they actually arrive.
That’s not a big issue when you’re at home sitting next
to a lamp and reading, but when you are on vacation in a
foreign country it’s nice to know that everything is wor-
king as it should.

• They often can only be operated using a specific app, and
each vendor has their own app with protocols that do not
work with other systems. As a result, you end up with a
whole bunch of apps on your smartphone.

• The nice thing about home automation is that you can
program them to send commands in response to sensor
readings. However, because most commercially available
systems are not compatible with each other, you have to
use an external service (such as IfThisThenThat) to get a
working system.

• Many wireless systems are based on Wi-Fi. In modern
residential buildings made from reinforced concrete, the
range of Wi-Fi signals is very limited.

• Security is not always optimal, so there is a distinct
chance that your neighbors will be able to control your
lamps.

• All in all, there are plenty of good reasons to roll up your
sleeves and build your own home automation system.

Overview
For the end nodes, which means the sensors and actuators,
you ideally want reasonably affordable devices which are also
energy efficient. The central controller obviously has to support

IoT Gateway
and Wireless Nodes
Part 1: The hardware

By Hennie Spaninks (Netherlands)

Sometimes you want to have specific functions in a home automation system that are not available with
any commercial product. That’s why the author decided to develop his own system, which features wireless
communication between the various nodes and the central gateway. The gateway uses MQTT to send
measurement data to an OpenHAB server, which processes and displays the data. His project has now been
copied and extended by other users. In a series of two articles, the author describes the key elements of his
system. More detailed information and the corresponding software are available for free on the Internet.

PROJECTHOMELAB

www.elektormagazine.com March & April 2017 19

nodes can autonomously transmit measurement data at regular
intervals. This measurement data can also be sent on request
in response to read commands.

The data flow through the gateway is shown in Figure 2. End
nodes can be programmed for various functions. To ensure that
the gateway handles communications with each end node cor-
rectly, there is a fixed allocation of functions to devices. Based
on the device identifier (DevID), the gateway knows how to
handle the incoming data. Table 1 shows an overview of the
DevIDs recognized by the gateway.
Devices 0 to 15 provide system functions. They are described
in Table 2.
The error messages generated by the gateway are listed in
Table 3.

standard network protocols, including TCP/IP. That is why the
author opted for a two-tier system consisting of end nodes, a
gateway and a central control unit. The overall system is shown
schematically in Figure 1.

• For communication with the end nodes, the system uses
wireless duplex links operating at a relatively low fre-
quency. In Europe the available frequency bands for this
purpose are 433 MHz and 868 MHz. The 433 MHz band
is fairly crowded, so we opted for 868 MHz. Transceivers
for this band which can be controlled over an SPI bus are
available from HopeRF. We chose the version with the hig-
hest transmit power: the RFM69HW. This module has inte-
grated hardware encryption, so security is not an issue.

• The RFM69 does not have a TCP/IP stack, so fixed-size
data blocks of 66 bytes are exchanged over the radio link.
A gateway is necessary to convert the data from the wire-
less network to TCP/IP and vice versa.

• To distribute the data from the sources (sensor nodes) to
the recipients (for example, a smartphone), we opted for a
different standard protocol which runs over TCP/IP: MQTT.
It is a messaging protocol designed to send short mes-
sages to several recipients in a simple manner. Because
MQTT is a standard protocol, data streams from our home
automation system can also be used in other MQTT-based
systems.
MQTT requires a server to act as the message center,
which is called the broker. A recipient (such as a smart-
phone) can subscribe to a data stream, after which it
receives messages for that stream through a push service.
To implement our MQTT broker we use Mosquitto [1], an
open source MQTT broker implementation which is availa-
ble for several platforms (including Raspberry Pi).

• Our home automation system should preferably be com-
patible with devices from other vendors. This means that
it must also be able to communicate using other proto-
cols. For this we opted for a system based on OpenHAB
[2]. This open source software can convert messages
in various protocols to a universal message stream. For
example, you can use it to control Philips Hue lamps.

• OpenHAB has a standard app (for Android and iOS) which
communicates with your own OpenHAB system over the
Internet using a secure connection. That means you don’t
have to worry about configuring firewalls or encryption for
the link between your smartphone and your home auto-
mation system. OpenHAB can be accessed on the local
area network through a Web browser.

• OpenHAB has an underlying database which makes it easy
to make charts of measured values. Creating rules and
scripts to automate tasks is easy in OpenHAB. OpenHAB
also has external interfaces for sending alerts via email or
the OpenHAB app.

• We use readily available and relatively low-cost compo-
nents: Arduino as the controller for the wireless nodes,
and a Raspberry Pi as the platform for Mosquitto and
OpenHAB.

Protocol The protocol for the end nodes
Various functions are defined for the end nodes. They include
sensors for temperature and humidity, switches, PIR motion
detectors for input, and relays and LC displays for output. End

Figure 2. The various data streams passing through the gateway.

Figure 1. The architecture of the home automation system.

Table 1. Device identifiers.
DevID range Function
0-15 System devices
16-31 Binary output (relay, lamp)
32-39 Integer output (dimmer, PWM)
40–47 Binary input (switch, PIR module)
48-63 Decimal input (temperature, humidity)
64-71 Integer input (keypad, switch)
72 String transfer (LCD display, RFID reader)
73-90 Reserved for future use
90-99 Error messages

20 March & April 2017 www.elektormagazine.com

The format of the MQTT topic subscription is

home/rfm_gw/direction/nodeID/deviceID

Here direction specifies the direction of the data flow: “nb”

MQTT messages
The MQTT protocol works on the basis of subscribing to topics
(see [3]). After a recipient has subscribed to a topic, the bro-
ker ensures that all messages related to that topic are sent
to the recipient.

HT1117-33
U3

GND TAB

3 2

1 4

RFM69HCW

RESET

U1

3.3V DIO0

MISO
MOSI

DIO1
DIO2
DIO3
DIO4
DIO5

SCK

NSS

GND
ANT
GND

12
13
14
15

10
11

28

1

3
4
5
6
7

9

ARDUINO_MINI

U2

TXO
RXI
RST
GND VCC

RST
GND
RAW

10
13

10
11
12

11
14

12
15

13
16

A0
17

A1
18

A2
19

A3
20
21
22
23
24

2
3
4
5

1
2
3
4
5
6
7
8

69

7
8
9

ANT1

R1

1k

LED1

DHT11
U4

DATA

GND

VDD

NC

+5V

R3

4k
7

R2

10
k

S1

C1

100n

C2

47u

15008 5 - 13

Figure 3. Schematic diagram of an end node.

Table 2. System functions.
DevID Name RW Function

00 Uptime R Minutes since node start
01 TxInterval RW Transmit interval in seconds (0 = no periodic transmission)
02 RSSI R Radio signal field strength
03 Version R Software version of the end node
04 Voltage R Battery voltage
05 ACK RW Flag for acknowledging sent commands
06 Toggle RW Flag for toggle function of switch on end node
07 Timer RW Flag for timer function of pushbutton on end node
08 Btnpress RW Flag for sending button press message
09 TXreply R Number of repeats necessary on the radio link

Table 3. Error messages.
Error ID Name Description

90 Link error The radio link is interrupted.
91 Syntax error There is a syntax error in the MQTT message.
92 Invalid device The addressed DevID is not present in the end node.
99 Wakeup Message sent when the node starts up.

Table 4. MQTT examples.
Topic Message Description

home/rfm_gw/sb/node02/dev16 ON Switches on the LED at node 02.
home/rfm_gw/sb/node02/dev16 READ Queries the status of the LED at node 02.
home/rfm_gw/sb/node03/dev01 300 Sets the transmit interval of node 03 to 5 minutes.
home/rfm_gw/sb/node03/dev01 0 Disables periodic transmission from node 03.
home/rfm_gw/sb/node18/dev48 READ Reads the temperature from node 18.
home/rfm_gw/sb/node05/dev02 READ Reads the radio signal field strength at node 05.
home/rfm_gw/sb/node05/dev03 READ Reads the software version of node 05.

Figure 4. A DIG node in a plug-in timer housing.

www.elektormagazine.com March & April 2017 21

• DHT is a node with sensors for temperature and humidity.
This node has a digital output and a pushbutton.

• DIG is a simplified version of the DHT node. It only has a
pushbutton and a digital output.

• RFID is a node with an RFID reader. When an RFID
device is detected, the node sends the RFID identifier to
OpenHAB.

• LCD is a node with a liquid crystal display. Text strings can
be sent from OpenHAB to the display.

• RC is a node equipped with a 433 MHz transmitter module.
It can be used to operate switches in the Dutch KlikAanKli-
kUit home automation system [4].

•
The software can easily be adapted to add or modify functions.
The construction of a node is strongly dependent on its func-
tion. For example, the case of an inexpensive mechanical timer
switch can be used to house a DIG node. An example of this
is shown in Figure 4.

The gateway
The gateway consists of an Arduino, an RFM69 module and
an W5100 Ethernet module. Figure 5 shows the schematic
diagram. The gateway also uses an Arduino operating at 3.3 V.
On the gateway the SPI bus is shared by the RFM69 and W5100
modules. The SCK, MOSI and MISO signals are connected to
both devices in parallel. Different Slave Select (SS) signals are
used to select the individual devices on the bus: pin 8 for the
RFM69 and pin 10 for the Ethernet module.
An AMS1117 also provides the 3.3 V supply voltage for the
gateway. Two LEDs are provided to indicate the status of the
gateway.
A separate module is used for the Ethernet connection. If you
use an Arduino Buono board, you can use a Wiznet Ethernet

(northbound) means from the node to OpenHAB (sensor data),
while “sb” (southbound) means from OpenHAB to the node
(commands).
• nodeID is the node identifier. Each node has a unique ID

(address), which is determined when the code is compiled.
The gateway always has node ID 01.

• deviceID is the function identifier, as previously described.

The MQTT message (payload) depends on the device and the
direction.
• Southbound: The message contains commands for the

node (ON, OFF, READ) or settings for the node, such as
the number of seconds for the transmit interval.

• Northbound: The message contains the value of the para-
meter belonging to the DevID.

The gateway subscribes to all southbound messages for all
nodes in the network by means of the following wildcard topic:

home/rfm_gw/sb/#

Of course, OpenHAB needs to receive all messages from the
nodes, so it subscribes to the appropriate topics:

home/rfm_gw/nb/#

Table 4 shows a number of examples of MQTT messages.

End nodes
The end nodes are based on Arduino boards. The following
conditions and constraints are taken into account in the design:

• The RFM69 module has an operating voltage of 3.3 V, and
the maximum permissible voltage on its inputs is 3.9 V.
To keep things simple, we use an Arduino that also ope-
rates from 3.3 V. We opted for the Arduino Pro Mini, which
operates from 3.3 V and can be connected to the RFM69
without level conversion. You can also use the Arduino
Buono R3, which can be switched to 3.3 V.

• The RFM69 module briefly draws a significant amount cur-
rent (130 mA) when transmitting, so the supply needs to
have sufficient capacity.

• The Arduino and the RFM69 communicate with each other
over the SPI bus. The standard Arduino pins are used for
that purpose.

• The RFM69 may not be operated without an antenna. A
piece of wire 8.6 cm long gives excellent results in most
cases.

The schematic diagram of one of the end nodes is shown in
Figure 3. This node is equipped with a DHT11 temperature
and humidity sensor connected to pin 4 of the Arduino. A
pushbutton is connected to digital I/O pin 8, and an LED is
connected to pin 9.

The RFM69 module is connected to the Arduino over the SPI
bus (SCK, MOSI, MISO and NSS). The 3.3 V supply voltage
is provided by an AMS1117 voltage regulator, with enough
decoupling capacitors to suppress current spikes.
The software loaded into the Arduino determines the function
of the end node. The following end node devices have been
developed so far:

HT1117-33
U3

GND TAB

3 2

1 4

RFM69HCW

RESET

U1

3.3V DIO0

MISO
MOSI

DIO1
DIO2
DIO3
DIO4
DIO5

SCK

NSS

GND
ANT
GND

12
13
14
15

10
11

28

1

3
4
5
6
7

9

ARDUINO_MINI

U2

TXO
RXI
RST
GND VCC

RST
GND
RAW

10
13

10
11
12

11
14

12
15

13
16

A0
17

A1
18

A2
19

A3
20
21
22
23
24

2
3
4
5

1
2
3
4
5
6
7
8

69

7
8
9

ANT1

R2

1k

LED2

+5V

C1

100n

C2

47u

R1

1k

LED1

RJ45

U5

1
2
3
4

15008 5 - 15

W5100 Ethernet Module
U4

MOSI
MISO

NSS

SCK

GND

VDD

+5VR a d i o
l i n kl i n k

M Q T T

Figure 5. Schematic diagram of the gateway.

22 March & April 2017 www.elektormagazine.com

shield instead. Only one gateway is needed for the entire sys-
tem. For this reason, the author built the gateway on a proto-
typing board (Figure 6).

There are two things you have to pay attention to when buil-
ding the gateway, as described below.

W5100 bug
The hardware of the W5100 is not directly suitable for sha-
ring an SPI bus with other devices. When an SPI bus device is
not using the bus, it is supposed to release the signal lines so
that they can be used by other devices. The original W5100
is not designed to do this. The author solved this problem by
using an inverter to generate the SEN control signal from the
CS signal (see [5] for more details). The necessary inverter
is integrated in newer versions of the W5100 module. The
module which the author bought on eBay did not include this
feature, so the inverter had to be added externally. As can be
seen in Figure 7, a type 4011 IC was used for this. There you
can also see that it is easy to connect the SEN signal line via
a pull-up resistor on the circuit board. Remember to connect
the unused inputs of the 4011 to ground.

Short-circuit via ICSP header
If you use a standard-format Arduino with the W5100 shield,
the Arduino board is connected to the 5 V supply voltage of
the Ethernet shield through the ICSP header. That pulls up the
3.3 V supply voltage line on the Arduino, which can result in
damage to the RFM69. This can be avoided by cutting off the
VCC pin of the ICSP header or bending it aside so that it does
not make contact.

To be continued
In the following article we will describe the software for the
gateway and the nodes, as well as the configuration of Mos-
quitto and OpenHAB. If you can’t wait, you can already down-
load the software at [6]. You must have Mosquitto available
in order to test the gateway. It’s also handy to have an MQTT
client for testing. The MyMQTT app is a good choice for Android,
and on a Windows system you can use Chrome Lens or MQTT.
FX. Figure 8 gives an impression of the messages you can
expect to see.

This project has now been built by several other people. Exten-
sions, issues and experience are discussed and shared on the
forum site [7].

(150085)

Web Links

[1] https://mosquitto.org

[2] www.openhab.org

[3] www.elektormagazine.com/tags/journey-into-the-cloud

[4] www.klikaanklikuit.nl (Dutch!)

[5] http://john.crouchley.com/blog/archives/662

[6] https://github.com/computourist/RFM69-MQTT-client

[7] http://homeautomation.proboards.com/board/2/
openhab-rfm69-based-arduino

Figure 7. The 4011 is attached to the housing of the Ethernet connector
and generates the SEN signal for the W5100 from the CS signal.

Figure 8. This screenshot shows some examples of MQTT messages.

Figure 6. The author’s fully assembled gateway.

