
Mini Construction Project:
6

Improved 24-line
1/0 card for PCs
Here’s an improved design for a flexible input/output card for ISA-bus personal computers. It provides
a total of 24 digital lines, each of which can be programmed as either an input or output as required
for interfacing to outboard input isolation circuitry or output relay or SCR/Triac drivers. It can be con-
figured easily for any of the I/O base addresses allocated for ‘prototyping cards’, and the outboard
connections are made easier by using three 10-way IDC headers positioned along the rear edge.

by JAMES BARKER

Back in its June 1989 edition, EA’s

former stablemate E7/ published the
design for a low cost, easy to build 24-
line I/O card for PC’s, presented by
designer Graham Dicker. Christened the
ETI 1623, it was a very handy card for
anyone who needed to use a PC for
monitoring and control of other equip-
ment, and my friend Bob Barnes of
Sydney-based PCB maker RCS Radio
tells me that his firm alone has sold a
large number of boards for it — so it
was Clearly a very popular project.
Very few designs meet everyone’s

needs, though, and recently I was made

aware that the original design had a cou-
ple of small but sometimes frustrating
limitations. One was that its off-board
connections were all brought out to a

Se ee ae eS Se
Ss See a Sa

The new card is easily configured for any of eight
l/O base addresses in the ‘prototyping card’
range, and provides its 24 I/O lines in three
groups of eight along the rear edge.

single 26-way DIL IDC pin header
along the top edge, which meant that the
ribbon cable to the ‘outside world’ had
to be taken through one of those clumsy
90° turns to get out of the computer —
and then split up into separate bits, if
you wanted hook it up to separate input
and output driver boards.
The other limitation was that the orig-

inal card was configured for an I/O base
address of 279H — that nominally allo-
cated to the PC’s games port. By cutting
tracks on the PCB and fitting new links
it could be moved to various other
addresses between 201H and 280H, and
no doubt this provided a satisfactory
range of choices in 1989. However
nowadays with many PCs having sound
cards and/or games port cards fitted as

standard, it’s often more convenient to

have an I/O card located in a different
part of the PC’s ‘I/O space’ — and
hopefully reconfigurable more easily,
say with a jumper strip or DIP switch.
A couple of months ago, a friend of

mine — Geoff Wrightson, of Cardiff
Heights in NSW — decided that the
time had come to try coming up with an
improved version of the 1989 design, to
remedy these limitations. Geoff himself
worked out the modified I/O address
decoding circuitry to allow the card to
be repositioned in the area set aside for
‘prototyping cards’ (300 - 31FH), with
either a jumper header or DIP switch for
convenience, and then I was roped in to
help produce a new PCB design.
The new card you see in the photo is

Fig.2: Taken from Intel’s handbook, a block diagram showing
the internal structure of the 8255 I/O controller.

70 ELECTRONICS Australia, November 1996

PC BUS
EDGE CONNECTOR

j <4->o
pid ©, ©

A
A? O3p
(Cl ag bt

5 pl

oO, ;

3.6 le

Boe Es

ea
6

DIP
SWITCH

what we’ve produced, and we believe

it overcomes the original limitations
fairly neatly. It’s a little larger than
the original, but still quite small

enough to fit inside pretty well any
standard PC. And since the off-board
connections are brought out to three
10-way ‘protected’ header strips along
the board’s rear edge, the ribbon

cables can be run straight out through
the usual rear PC slot without any 90°
bends, and connected easily to differ-
ent driver modules.

Each of the 10-way headers makes
available a set of eight I/O lines, togeth-
er with connections to the PC’s +5V and
ground rails — which can be used to

power low-drain input conditioning or
output driving circuitry.

Circuit description
The circuitry on the card itself is very

similar to the original design, with only
three ICs: a pair of 74LS138 decoders and
an 8255A programmable peripheral inter-
face (PPI) IC, as made by Intel, NEC and
other firms. However Geoff Wrightson’s
modified address decoding now allows
the card to be located at any of the eight
possible I/O base addresses in the range
300 - 31CH, simply by turning on one of
eight DIP switches in SW1.

As you can see from the schematic, [C2

decodes PC bus address lines A5 - A7,
and is also gated on when A8 is high. The

54a

DIP SWITCH BASE ADDRESS

QO-bar output of IC2 is then used to gate
on IC1, along with A9 and the address
enable (AEN) line. When IC1 is enabled,
it then decodes address lines A2 - A4, and
as a result each of its eight outputs goes
low only for a particular group of four I/O
addresses, each with its lowest or “base’

Fig.1: The registers inside the 8255
chip occupy the base address and the
three addresses above it.

Base Address + 3 —>

Base Address + 2 —>

Base Address + 1] —>

Base Address a=

address as shown in the table. Closing the
appropriate DIP switch in SW1 therefore
allows the 8255 PPI chip IC3 to be
enabled only when the CPU specifies that
group of addresses.

This decoding scheme is very conve-
nient as the 8255 has four internal eight-
bit registers — three data registers, and

a control/status register. And the chip’s
internal addressing allows any one of
these registers to be ‘connected’ to its
eight data I/O lines (DO - D7), simply by
manipulating the logic levels at its pins
9 and 8. So by connecting the PC bus
address lines AO and AI to these pins,

ELECTRONICS Australia, November 1996

The circuit for the new
card. As you can see,
it uses only three ICs.
The 8255 does all of
the real work, and is
fully configured by the
PC’s software. IC1 and
IC2 decode the card’s
address, along with
the DIP switch.

the chip’s internal registers are automat-
ically located at the four I/O addresses
starting at the base address selected by
IC2, IC1 and SW1 (Fig.1).

As you can see, PC control lines I/O

Read-bar, I/O Write-bar and Reset are

also connected to the appropriate con-
trol pins of U1, allowing the CPU to
exercise full control over data flow to
and from the chip, when it is addressed.
It’s a very simple and straightforward
arrangement as far as hardware is con-
cerned, but still allows the software to

manipulate IC3 as needed.
All the real work is done inside the

8255 chip, of course. This is a very flex-
ible chip, which was_ specifically
designed by Intel to implement flexible
parallel interfaces for microprocessor
systems. The internal structure of the
chip is quite complex, as shown in Fig.2
— taken from the Intel publication
Microcomputer Components Handbook,
Microprocessors and_ Peripherals,
Volume 2. I won’t go into all the details
of its operation here, and if you want
more details I suggest you either refer to
the Intel book or else the original article
in the June 1989 issue of E77. :

Expressed simply, though, two of the
three internal data registers are each allo-
cated to handling one of two groups of
eight I/O lines, labelled Port A and Port

B. The remaining data register is effec-
tively split into two groups of four I/O

Y a &

I/O Card for PCs
lines, which together make up the third
Port C. The fourth ‘control’ register is oS
also effectively split into two four-bit
sections, one of which controls the oper-
ation of the Port A and ‘upper half’ of 96PCIO11
Port C, while the other half controls Port | eo SOLDER SIDE
B and the ‘lower half’ of Port C. The = 76543210

24 Line I/O 2]

control codes written into the two halves
of the control register can therefore be
used — together with the main PC bus
control signals Rd-bar, Wr-bar and Reset

— to determine the I/O functions of all
24 I/O data pins, on the three ports.

It’s fairly simple to program the chip so
that the eight lines of Port A and Port B
are configured together as inputs or
latched outputs, as required, while the two
halves of Port C can be configured either
together or separately, in the same way.
The chip also allows a choice of three

operating ‘modes’ for each of the two
main groups (Port A and Port C upper
half, Port B and Port C lower half),

where mode 0 corresponds to basic I/O
operation, mode 1 to strobed I/O opera-
tion and mode 2 to bidirectional bus
operation. When one of the two groups
is Operating in modes | or 2, the various Hae of thas talt-at Poa C chevy er LEE LLELELELEELELEEELELELELELEL =

become control lines for the eight data
lines of Port A or Port B.

It all sounds rather complicated, but
the bottom line is that the operation of

CONNECTIO

the card’s 24 I/O lines can actually be | be-lesiinedt Use 2
controlled quite easily by the CPU and 24 Line I/O ee Whale. Ata
software, simply by writing data to and : +5v
reading it from the four registers in the 96PCIO11
8255. This can be done using OUT and
INP commands in BASIC, for example,
or the equivalent commands in lower
level languages like C or assembly lan-
guage. We’ll look briefly at this shortly.

-Construction 01234567
There’s very little involved in building

the new card, because it uses such a small
number of components. The main thing is
to use a good quality double-sided PC
board, with gold plated edge connectors
for good reliability. The prototype boards
were made for us by Bob Barnes of RCS
Radio, who can now supply them from
stock as Cat. No. 4240S, for $41.80 plus
postage of $4 within Australia.

Wiring up the PCB should be very
straightforward, as there are only the three
ICs, an eight-way DIP switch, the three
guarded 10-way IDC sockets and a few
bypass capacitors. It should all be quite
clear from the photo and overlay diagram.

Note that while the two smaller and
_ lower-cost ICs are best soldered directly oe

to the board, I recommend that you use a
socket for the more expensive 8255. The copper patterns for both sides of the PCB, by courtesy of RCS Radio.

¥2 ELECTRONICS Australia, November 1996

COMPONENT SIDE

O+ GC!

COGCbCREOE ECE

MODE SET FLAG
1 = Active

GROUP A MODE SELECT:
00 = Mode 0
0] = Mode 1
1X = Mode 2

PORT A
1 = Input, 0 = Output
PORT C (Upper Half)
1 = Input, 0 = Output.

GROUP B MODE SELECT:
0 = Mode 0, 1 = Mode 1

PORT B
1 = Input, 0 = Output

PORT C (Lower Half)
1 = Input, 0 = Output

GROUP A

GROUP B

You'll need a 40-pin DIL socket, and it’s
a good idea to get a good quality socket to
prevent problems down the track.
By the way if you make your own

PCB, don’t forget to remove the copper
strip along the bottom shorting the edge
connector pads, before you try plugging
it into the PC. As you’re probably
aware, the strip is only used when the
pads are being gold plated.
When your board is wired up, the only’

other thing to do as far as the hardware is
concerned is to set the DIP switch for the
I/O base address you want. Only one of
the eight switches should be switched on,
and in most cases it will probably be OK

to set SWO on — giving a base address of
300H. This shouldn’t clash with any of the
other cards in most PCs, and in most cases

the only time you’d want to set it for
another address is if you already have
another similar card, already set to 300H.

Programming it
As mentioned, virtually every aspect

of the card’s operation is controlled by
the CPU and its software. I’m not going
to describe this in detail, just give you a
sample or two to get you started.
The 8255 chip’s operating mode 0 is

the simplest, and is sufficient for many

basic parallel I/O jobs. There are actual-
ly 16 different possible combinations of
input and output functions for the three
main ports, determined by the values of
bits DO and D1 (Group B) and D3 and
D4 (Group A) in the byte written to the

_ headers.

_ Fig.3 (left): The 8255 is

At right is the PCB over-
lay diagram, to help you
in placing the compo-
nents. Note the orienta-
tion of the ICs and I/O

configured by software,
using the bits loaded into
its control register.

8255’s control register (Fig.3).
As an example, say you want to con-

figure the 8255 to operate in mode 0,
and so that it provides 12 input and 12
output lines — say with the eight lines
of Port A all used as outputs, those of

Port B all used as inputs, and those of
Port C split with the lower four as inputs
and the upper four as outputs. To do this
you'd need to set the various bits of the
control register as follows:
DO = | (Port C lower = inputs)
D1 = 1 (Port B = inputs)
D2 = 0 (Group B = mode 0)
D3 = 0 (Port C upper = outputs)
D4 = 0 (Port A = outputs)
D5 = 0 (Group A = mode 0)
D6 = 0 (Group A = mode 0)
D7 = 1 (Mode set flag active)
And this combination of bits corre-

sponds to a byte of 83H, so all you’d
need to do at the start of your program
is send this value to the 8255’s control
register — located at the card’s base
address plus three. You could do this
in Quick BASIC or Visual BASIC by
the statement:
OUT BaseAddress + 3, &H83

where “BaseAddress’ would be your
variable representing the card’s actual
base address — say 300H, or whatever
you’ve set the DIP switch for. You’d
have already initialised the variable at
the start of your program, with a state-
ment like:
BaseAddress = &H300 :
Once you’ve set up the 8255 for the

input/output configuration you want,
and also set up the BaseAddress vari-
able, it’s then an equally simple matter
to dump data to the various output lines,
and read it back from the input lines. For
example in Quick BASIC or Visual
BASIC, you just use OUT and INP

statements. So to set all of the odd-num-
bered output lines of Port A, say, you’d

simply send a byte of value &HAA
(10101010) to the 8255 Port A register,
at the card’s base address:
OUT BaseAddress, &HAA
Similarly you can read in the values

on the input lines of Port B, by grabbing
the data from its data register:
InputVar = INP(BaseAddress + 1)

where the variable ‘InputVar’ will end
up with a (decimal) value equal to the
data byte read back from the Port B
register.

Starting to get the idea? With the same
configuration, you’d set all four upper
bits of Port C to a 1 by sending FOH to
the Port C data register, thus:

OUT BaseAddress + 2, &HFO
And if you wanted to read the four

lower input lines on Port C, you’d use:

InputVar = INP(BaseAddress + 2)
AND 15 |
where the ‘AND 15’ masks off the four
high-order bits, to leave the lower four.

Of course you can set up the 8255 for
any other configuration of input and out-
put lines, and any other operating mode,
simply by sending a different control
byte to the control register at
(BaseAddress + 3). For all of the various
possibilities you’ll have to refer to the
8255 data sheets.
Needless to say, you can hook up the
card’s I/O lines to a wide range of input
conditioning and output driver circuits.
Some basic circuits were given in the
original ETT article, while others were
given in the FA article of August 1991.

I hope you find this improved I/O
card as handy as I’ve done. My thanks
to Geoff Wrightson for his help in
developing it, and also to Bob Barnes
of RCS Radio. +

ELECTRONICS Australia, November 1996 13

