
parity check bit.Catching Analogue data into

PSION PALMTOPS AND PCs
By Pei An and Pinhua Xie

IIt is very easy to interface the PSION
palmtops to the external world owing
to the fact that the PSION has a

standard RS232 port and it has a
powerful built-in programming
language.

This article describes a serial
port data logger that allows a
PSION to catch analogue data. The
data logger has one analogue input
channel (0-2.5V with a 12 -bit A/D
conversion accuracy. The data logger
utilizes a PIC16F84 micro -controller. It has a
small size and is powered by a 9V PP3
battery. A schematic showing the data
logger connected to a PSION is given in
Figure 1.

The data logger can be also used with
IBM PCs or other palm -top organisers
having a standard RS232 port.

Operations of the data logger
The data logger is connected to the RS232
port of a host computer via a serial cable.
After the data logger is powered on or
reset, it enters a waiting state during which
it waits for the computer to issue a
command byte (=15h).

After the computer sends the byte to the
data logger through the TX line of the
RS232 port, the logger accepts the
command and carries out an ND

conversion. After a conversion result is
available, the logger transmits the
conversion results back to the computer in
two byte transmissions via RX line of the
RS232 port. The first byte is the upper 4
bits of the conversion result and the
second byte is the lower 8 bits. After the
two bytes are transmitted, the data logger
flashes its LED once to indicate that a
conversion and data transfer cycle is
completed. Next, the data logger goes back
to the waiting state again.

The RS232 data format is as follows: 9600
Baud rate, 8 data bits, 1 stop bit and no

PSION 3C
DATA LOGGER

®®®I®-

Connected to

the RS232 port

PP3 9V battery

PSION/PC
Data Logger

PSION RS -232 cable

PSION 3C or other pcs

Only RX, TX and
GND lines are used

in the cable 9 -pin female D -type
RS232 connector

temperature sensor
humidity sensor
PH sensor

light intensity sensor
magnetic field sensor
pressure sensor, etc.

Sens

Battery is fitted inside the unit

from underneath

Screw terminal blocks to
connect a voltage from a sensor

Voltage range: 0-2.5V

Signal condi oning
a tl

amplification

Figure 1. PIC based Psion/PC single channel data logger system

Hardware of the logger
The block diagram of the data logger is
given in Figure 2. The system contains 4
units. They are a central control unit

(PIG16F84), an analogue to
digital converter unit

(LTC1285), an RS232/1 IL
converter unit and a

power supply unit. The
complete circuit

diagram of the data
logger is given in

Figure 3.
The

system
utilises only

two key ICs:
an LTC1285CN8

A/D converter and a PIC
controller PIG16F84. The

LTC1285 converts analogue signals
into digital data. It has a Serial Peripheral
Interface (SPI) for I/O operations. The
PIC16F84 is the managerial centre of the
data logger. It manages the communication
with computers via the RS232 port and it
controls the operation of the ND
converter.

PIC16F84
The central control unit is based on a
Microchip PIC16F84 peripheral interface
controller. The 16F84 has an EEPROM
memory (electrically erasable memory) to
store the program. This makes it
particularly useful for system development.
This is the reason why it is adopted for this
application.

The pin -out, the internal block diagram
and the organization of file registers of the
PIC16F84 is shown in Figure 4. Pin 14 and
pin 5 are connected to the positive and
negative rails of a power supply. The supply
voltage range is 2 to 6 Volts. The power
supply current is typically 2mA at 5V and 4
MHz clock frequency. This drops to several
tens of mA when the IC is in standby mode.
Pin 4 is the master clear. It must be high in
normal operation. Pin 15 and 16 are
connected to a crystal or ceramic resonator
up to 4MHz.

The PIG16F84 contains the following
main functional units:

an lkbyte 14 -bit wide EEPROM to store
instructions

 a 64 8 -bit wide EEPROM to store data
 15 (8 -bit) special function hardware file

registers (RTCC, OPTION, PCL, STATUS,
FSR, PORTA, PORTB, TRISA, TRISB,

EEDATA, EECON1, EEADR, EECON2,

PCLATH, INTCON)

 36 (8 -bit) general purpose file registers
(OC to 2F)

 an 8 -bit accumulator, w

ELECTRONICS AND BEYOND April 2001

Terminal blocks
to input analogue
voltage (0-2.5V)

9 -pin female

D -type connect to
connect PC or PSIONs

12-bit NO
converter

unit

(LTC 1285)

(PIC16F84)

Central
control

unit

RS232,TTL
converter

unit

Figure 2. Block diagram of the data logger for Psion/PC computers

TX (to transmit data)

RX (to receive data)

GND (digital ground)

 Port A (5 lines). Each line can be set as an
input or output. RA4 is used also by
timer/counter module. If configured as
outputs, they sink 25mA and source
20mA

 Port B (8 lines). RBO is also used as an
interrupt input. If configured as outputs,
they sink 25mA and source 20mA

 Four interrupt sources: External INT pin,
RTCC timer overflow, PB4 to PB7 change
status and data EEPROM write complete.

 8 -bit real time clock/counter with 8 -bit
programmable pre -scaler

 a watchdog timer

Table 1.

Port A
RAO (pin 17)
RA1 (pin 18)
RA2 (pin 1)

Port B
RBO (pin 6)

RB2 (pin 8)
RB5 (pin 11)
RB6 (pin 12)
RB7 (pin 13)

For PIC programming, there are only 35
single word instructions (assembly
language), which makes the programming
easy to learn. For more details of the
hardware and the instruction set of the
PIC16F84, please refer to the manufacture's
data sheet (Reference 1).

For programmers who are very familiar
with Basic or C language, Basic -like or C -like
programming languages for the PIC can be
used. With these high-level languages,
many functions are built into the language.
Also the compiler itself performs many low-
level tasks like allocating memory spaces.

In the present circuit, the PIC works in
the crystal oscillator mode. A 4MHz
ceramic resonator is used (see Figure 3).
I/O lines of the PIC16F84 are used as
shown in Table 1.

serial data output from the PIC (connected to RX of the RS232 port)
serial data input to the PIC (connected to TX of the RS232 port)
RA3 (pin 2) and RA4 (pin 3): not used

and RB1 (pin 7): not used
control of the logger status LED (output)
serial data output (Dout) from the LTC1285 (input)
serial clock (CLK) of the LTC1285 (output)
enable (-CS) of the LTC1285 (output)

9 -pin D -type

female
connector

TX

(pin 3)

RX
(pin 2)

GND
(pin 5)

o
RX

o
TX

R1

I 4K7

-5V

R2

4MHz l
Ceramic I
resonators

5.1V Zener 18

+5Vt

o

J1

Lines in the PC's
RS232 port

GND

T1

BC557

D1

R3

K
17

RA1

16 15

+5V--

14

OSC1 OSC1 VCC

RB5

RB6

RB7

IC116F84

RAO

Vos

-MCLR

RB2

Push button

1 ORESET
BUTTON

SW1

4

R4

4K7

11

12

13

7

8

+5V

-e-

Figure 3. Circuit diagram of the data logger and power supply

R5

2K

LED

D2

1N4148

D out

CLK

CS

5V

IC2 LTC1285

VCC Vref 1

GND

5V

+I N

IN

2.5V 0.8%-r-

Screwed
terminal

block

R6

100R 1-o
100R

R7

C2 C1

Cl and C2 100nF

5V
TC55RP5002 --

I
9V PP3

IC3 r
C31 C41 C51

100nF 15uF 100nF

5V

C7, 22uF

IC4
TLE2425

J2

2.5V-
-5V

IC5 7660

C6

100n F

C8, 22uF

April 2001 ELECTRONICS AND BEYOND

Pin out

N
H
H

RA2

RA3

RA4/RTCC

-MCLR

VSS

RBO/INT

RB1

RB2

RB3

00
01
02
03
04
05
06
07
08
09
OA
OB

OC

2F

u

PIC16F84

2_

18 RA1

17 RAO

16 OSC1/CLKIN

14 OSC2/CLKOUT --

14 VDD

13 RB7

12 RB6

11 RB5

10 RB4

RAM file register map

Indirect address Indirect address
RTCC OPTION
PCL PCL

STATUS STATUS
FSR FSR

PORT A TRISA
PORT B TRISB
Not used Not used
EEDATA EECON1
EEADR EECON2
PCLATH PCLATH
INTCON INTCON

36 8 -bit

general
purpose Mapped

registers in page 0

(SRAM)

Page 0 Page 1

...
H
.1-- EEPROM

Program
Memory

1Kx 14

Bím ram 4
.
V

Instruction Reg.

13/ Program Counter

8 Level Stack
(13 bit)

Direct Add

Data Bus 8

V

RAM
File

Reg36taters6x

7 RAM Addy

Addr Mux \

Instruction
Decode &

Control

Timing
Generation

Power -Up
Timer

Oacltlator
Start -Up Timer

Power -On
Reset

Watchdog
Timer

OSC?JClXOUT &iCLR VOD, Vss
OSCl/CLKIN

Figure 4. Pin -out, internal block diagram and the organisation of the RAM

7 / Indirect
Addr

FSR

STATUS Reg

EEPROM Data Memory

m EEPROM
Data Memory

84x8

EEADR

TMRO

\ MUX

ALU

I/O Ports

W Reg

RA4/TOCKI

,1I PORTA
O! RA3:RAO

PORTS

Analogue to digital converter
unit (LTC1285CN8)
The analogue to digital converter unit
utilises an LTC1285CN8 12 -bit
successive approximation A/D
converter. The pin -out and internal
block diagram of the IC is shown in
Figure 5. It requires a power supply
2.7V to 6V Pin 8 and pin 4 are
connected to the positive and negative
rail of the power supply. Pin 4 is the
reference voltage input. The typical
supply current to the chip is 260mA at
a sampling rate 6.6kHz with a power
supply of 2.7V. When it is in standby
mode, the supply current drops to
several nanoamps. The LTC1285 has a
differential analogue input (pin 2 and
pin 3) and the analogue input leakage
current is typically lmA. For more details of
the chip, please refer to the manufacture's
data sheet (Reference 2).

The LTC1285 communicates with other
circuitry through a 3 -wire SPI serial
interface. These three wires are -CS/SHDN,
CLK and Dout. -CS/SHDN (pin 1) low
selects the chip and initiates data transfer. If
the pin is at a high state, the converter is in
the standby mode. CLK (pin 7) is the clock
input. It synchronises the serial data
transfer and determines conversion speed.
At the falling edge of CLK, each bit of an
A/D conversion result (12 bits) is sent out
from Dout pin (pin 6).

The operating sequence of the LTC1285
is shown in Figure 6. Data transfer is

V ref

V in+

V in-

GND

VCC

CLK Vin+
2

Dout

-CS/SHUTDOWN

Vin =-0

Figure 5. LTC 1285 and its internal block diagram

Vcc
3

-CS/
SHDN CLK

7

Bias and
shutdown circuit

Csample

Serial port

SAR

Capacitor DAC-

1

V ref

4

Dout

GND

initiated at the falling edge of the chip
select -CS/SHDN (pin 1). After -CS falls the
second CLK pulse enables Dout. A null bit
(logic 0) appears on the Dout (pin 6) firstly.
At the next 12 falling edge of the clock, the
12 bits of the A/D conversion result appear
on Dout one by one.

In the present circuit, -CS, Dout and CLK
are connected to the RB7, RB5 and RB6 of
the PIC. The PIC sets RB7 (-CS) and RB6
(CLK) as output lines. RB5 is set as an
input.

RS232/TTL translator unit
The function of this unit is to perform
voltage conversions between RS232 and
TTL levels. From the circuit diagram, we
see that the RX line (the line from which

the logger receives data, RS232 voltage
level) is converted into a TTL voltage level
using a simple voltage clamp circuit based
on Rl and a Zener diode Dl. This
converter does not have an inverting
action. A TX signal (output from the logger,
RS232 voltage level) is generated by a
circuit consisting of R2, R3 and Tl. The
circuit requires a positive and a negative
power supply. The former is from the +5V
power supply of the data logger board. An
on -board voltage inverter, TC7660,
generates the latter.

The pin -out the RS232 port on the
PSION 3C is given in Figure 7. If the data
logger is to be connected to the PSION
computer, a cable as shown in Figure 8 is
needed. You could make one yourself.

50 ELECTRONICS AND BEYOND April 2001

-Cs

CLK

D out
Hi -z

Falling edge output data

Null

I bit B11 B10

MSB

B9 B8 B7 B6 B5 B4 B3

-L.

B2

Figure 6. Timing sequence of the LTC1285 A/D converter

51 BO

LSB

Iii -z Null

bit B11 1310

There are only three wires to connect. It is
noted that the standard PSION 3C serial
cable has a 9 -pin D -type female connector
at the end. The connector on the data
logger is also a 9 -pin D -type female
connector. A gender converter should be
used in this case to allow the cable to be
connected to the data logger. Figure 8 also
shows how this converter can be
constructed. Care should be taken when
making the cable and the
gender converter to ensure
that the transmit line from
the PSION goes into the
receive line of the data
logger. The transmit line
from the data logger should
go into the receive line of
the PSION computer.

The pin -out of the RS232
port on a PC is given in
Figure 9. If the logger is to
be connected to an IBM PC,
a standard RS232 cable is
used. The details of the
RS232 port and how to use it
can be found in Reference 3.

Power supply unit
The circuit of the power
supply unit is given in Figure
3. The power supply is a PP3
9V battery. It is regulated into

a +5V power supply using a TC55RP5002EZB
regulator. The TC55RP is a 5V fixed voltage

regulator with a maximum supply current
30mÁ. It offers a very low dropout voltage of
100mV and a quiescent current of 3.5mA.
The +5V supply is converted into +2.5V by
the TLE2425 2.5V voltage reference IC. The
2.5V reference voltage is used by the A/D
converter. The TC7660 converts the +5V
voltage into a -5V voltage.

Construction of the logger
The data logger is constructed on a single -
sided PCB board and is housed in a slim
size box. Figure 10 gives the component
layout and Figure 11 shows the assembly of
the logger inside the box.

PIC software development
After pressing the reset button or the
power to the data logger being turned on,
the data logger enters the waiting
procedure, during which it constantly
monitors the serial data input line of the
RS232 port through PA1 (pin 18).

Once a command byte 15h is received,
the data logger begins the A/D conversion
procedure. The A/D converter is activated
and the A/D conversion result is loaded into
the PIC. Next, the PIC transmits the A/D
conversion result back to the host
computer in two separate byte
transmissions. The two bytes represent a
12 -bit A/D conversion data. The upper 4 bits

r5

RS232 connector on PSION 3C

PSION 3C palmtop computer

PCMCIA-type 15 -pin

female connector

RS232 port

PCMCIA-type 15 -pin
male connector

15 -core screened cable

The cable can be purchased
or made by yourself

Figure 7. Pin -out of connectors on the Psion 3C serial cable

In the present application, only
pins 2,3 and 5 are used

D -type 9 -pin

female connector

9 B 7 6

9 -pin PSION 3C description

1 nc no connection
2 4 TX (3C transmiting data)
3 8 RD (reading data into 3C)
4 5 DSR (data set ready)
5 15 signal ground
6 3 DTR (data terminal ready)
7 7 CTS (clear to send)
8 2 RTS (request to send)
9 6 RI

TX, pin 4, wire colour: blue+gray
RX, pin 8, wire colour: yellow + gray
GND, pin 15, wire colour: black

15

PCMCIA-type 15 -pin
female connector

TX, Blue + gray

RX, Yellow + gray

D -type 9 -pin
male connector

Converter housing

PCMCIA assembly (screened 15 cores)
available from CPC, Stock number: CN00842

`
D -type 9 -pin

female connector

2 TX
3 RX
5 GND

Figure 8. Construction of the Psion 3C serial cable and gender converter

D -type 9 -pin
male connector

A gender converter

are sent first and the lower 8 bits
are sent next. The PIC sends out
the bytes serially via RAO (pin
17) and communication
between the host computer and
the PIC has no handshakes.

The PIC software can be
written in assembly language
and in Basic -like or C -like
languages. The present
program is written in BASIC
PRO language from Micro
Engineering Lab (References 4
and 5). The complete PIC
software is written using PIC
BASIC Pro and is given in
Program List 1.

The PIC BASIC compiler is a
programming language that
makes it very easy and quicker

April 2001 ELECTRONICS AND BEYOND

1 2 3 4 5----

6 7 8 9

(a) 9 -pin male socket viewed from the back of the computer

1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23 24 25
(b) 25 -pin male socket viewed from the back of the computer

Pin functions of the RS232 connectors

25 PIN 9 PIN NAME DIRECTION

(FOR PCS)

DESCRIPTION

1 Pmt - Protective ground

2 3 TD OUTPUT Transmit data

3 2 RD INPUT Receive data

4 7 RTS OUTPUT Request to send

5 8 CTS INPUT Clear to send

6 8 DSR INPUT Data set ready

7 5 GND - Signal ground (common)

8 1 DCD INPUT Data carrierdetedt

20 4 DTR OUTPUT Data terminal ready

22 9 RI INPUT Ring indicator

23 DSRD I/O Data signal rate detector

Figure 9 Pin -out of the RS232 port on PCs

for you to program a wide range of
powerful Microchip's PIC micro -controllers.
The Basic -like structure is much easier to
read and write than the assembly language.
It is a viable alternative to assembly
language. The PIC BASIC compiler gives
you direct access to all the PIC micro -
controllers' registers (I/O ports, ND
converters, Hardware serial ports etc.). It
automatically takes care of memory
allocation and page boundaries and
memory banks. It also provides many built-
in commands to do various things that will

save a programmer many
hours to develop in the
assembly language.

PSION link software
The demonstration OPL
program is very simple.
Firstly, it sends a command
byte 15h to the data logger.
After this it reads two bytes
from the data logger. The
two bytes are then
combined into a voltage.
The voltage is then
displayed on the screen.
There are plenty of
explanations given in the
Program List 2. The use of
the OPL programming
language can be found in
Reference 6.

TP6 PC link software
The program for PCs is
written in Turbo Pascal 6 for
DOS (Program List 3).
Firstly, it sends a command
byte 15h to the data logger.

After this it reads two bytes from the data
logger. The two bytes are then combined
into a voltage. The voltage is displayed on
the screen. The details of how PC software
controls the RS232 port can be found in
Reference 7.

VB5 PC link software (Reference 8)
Details of programming the RS232 port on
PCs using Visual Basic programming
language can be found in Reference 8. The
program source code in VB5 is given in
Program List 4. Some of the commands used

in the present project are explained below:
A PC may have a number of COM ports.

Each port has a logic name COM1, COM2
or COM3. To select a port, use the
following command:

MSComnl.CommPort = 4 'here COM4 is

selected

Then the port is configured to treat the
input data byte as binary and the port is
opened:

MSComnl.InputMode =

comInputModeBinary

MSComnl.PortOpen = True

To output data from the COM port, use the
following command:

MSComml.Output = Chr$(1 * 16 + 5)

'15H is output from the COM port

Finally to read data from the COM port, the
following commands are used:

MSComml.InputLen = 1 'When

reading data from the COM, read one

byte each time

MSComnl.InBufferCount = 0 'The

count of byte in the input buffer is

cleared = 0

Do

DoEvents

Loop Until MSComnl.InBufferCount = 2

'Check number of bytes in the input

buffer

'If it is 2, it means two bytes are

received

volt = (AscB(MSComnl.Input) * 256 +

LED Mounted to the board
from the track side

Figure 10. Pin -out of the RS232 port on PCs

PP3 BATTERY

GND

7 LED

+5.1-9V

D2 4148

SW1 C3 loon O
Tc55 o

C4I5uF o
+ R4

I4K7 I
R5

I2K0

OC5100n

CO
tt

 K

U

C6 100n
_
il`1 _

ClC1100n C2 100n

16F84

V+ V GND

IC5 76617
C7

22u

o
U

O C8

R3 14
22uF

0 02 4K7

® ELECTRONICS AND BEYOND April 2001

LED mounted
on the other

side of the PCB board

Reset

button

L
co >,

Z á
_

>Gº
rraanrrexresnxemlogp.,

,eeu ,171-.
SwF

4K7

meo

ID
557

+V in J
` GND

-V in

Voltage input

Figure 11. Assembly of the data logger

RS232

connector o

PS/ON/PC

Data Logger

Logger

status
LED

Voltage input

(0-2.5V)

G V- V+

GND J L +V in
-V in

Voltage input

AscB(MSComml.Input)) / 4096 * 2.5

'The first MSComml.input reads the

'1st byte and the second

'MSComml.input reads the 2nd byte.

4. User manual of PicBasic Pro compiler
<www.picbasic.co.uk>

5. Experimenting with the PICBASIC PRO

compiler, Les Johnson, A Crownhill
Publication <www.crownhill.co.uk>

Technical support 6. Programming manual for PSION series 3
Kits including all necessary components <www.psion.com>

(pre-programmed PIC) to construct a
complete data logger are available from the
authors. Please make your enquiry to Dr.

7. Real -world Programming with
Basic, Anthony T. Mann,

SAMS publishing ISBN

Visual

;i: PSION AD PICI Q.
Pei An Tel/Fax/Answer: +44-(0)161-477-
9583, e-mail: pan@intec-group.co.uk

0-672-30619-0
8. PC interfacing, 14

or 51,2.3.4

communications and Select RS232 Port I

References
1. PIC16F84 data sheet, Microchip

windows programming,

William Buchanan,
Key in 1 to xfor COM1
to COMx. Then click

Technology Incorporated

<www.microchip.com>
Addison Wesley,

ISBN 0-201-17818-4
the button

2. LTC1285 data sheet, Linear Technology
Incorporated <www.1i near-tech .cow

3. PC Interfacing - Using Centronic, RS232 and

game ports, Pei An, Newnes, Butterworth -
Figure 12. Screen dump

of the VB5 driver
Get data

Heinemann, 1998, ISBN0240514483
<www.intec-group. co. uk>

Exit

Program List -1 (PIC program in PicBasic)
TX

RX

LED

CS

CLK

DOUT

datafpc

datatpc

dotal

datah

VAR PORTA.D

VAR PORTA.1

VAR PORTB.2

VAR PORTB.7

VAR PORTB.6

VAR PORTB.5

'define line for transmit

'define line for receiver

'define line for LED

'define lines for SPI bus of the A/D converter

VAR BYTE 'define variables to be used

VAR BYTE

VAR BYTE

VAR BYTE

VAR BYTE

'*************START OF PROGRAM*************

DEFINE OSC 4

LOW LED

LOW CLK

HIGH CS

INPUT DOUT

COTO START

**FLASH LED SUB

FLASH: HIGH LED

PAUSE 100

LOW LED

RETURN

'****RECEIVE DATA FROM PC

RX_PC:

SERIN2 RX,16468,[datafpc]

RETURN

'****TRANSMIT DATA TO PC

TX_PC:

SEROUT2 TX,84,[datatpc]
RETURN

CLKPULSE:

@ BSF PORTB.6

PAUSEUS 10

@ BCF PORTB.6

PAUSEUS 10

'9600, no RS232 driver

'9600, no RS232 driver

RETURN

'****A/D CONVERTER

AD: @ BCF PORTB.7

PAUSEUS 10

GOSUB CLKPULSE

GOSUB CLKPULSE

GOSUB CLKPULSE

GOSUB CLKPULSE

GOSUB CLKPULSE

GOSUB CLKPULSE

GOSUB CLKPULSE

GOSUB CLKPULSE

GOSUB CLKPULSE
GOSUB CLKPULSE

GOSUB CLKPULSE

GOSUB CLKPULSE

GOSUB CLKPULSE

@ BSF PORTB.7

datah.7=0

datah.6=0

datah.5=0

datah.4=0

RETURN

'LOW CS

: GOSUB CLKPULSE

datah.3=DOUT

datah.2=000T

datah.l=ROUT

datah.0=D0UT

: datal.7=DOUT

: datal.6=DOUT
datal.S=DOUT

datal.4=DOUT
datal.3=D0UT

: datal.2=DOUT

datal.1=D0UT

: datal.0=D0UT

'HIGH CS

'****TRANSMIT A/D RESULT BACK TO PC
TXAD:

GOSUB AD

datatpc=datah

GOSUB TX PC

GOSUB FLÁSH

datatpc=datal

GOSUB TX PC

RETURN

'**************MAIN PROGRAM****************

START: PAUSE 100

GOSUB FLASH

ST1:

GOSUB RX PC
IF datafpc=$15 THEN GOSUB TXAD

GOTO ST1

100nF ceramic disc

PARTS LIST

Resistors

0.25W, 1% metal film resistors

R1

R2

R3

R4

R5

R6,R7

4K7

4K7

1K0

4K7

2K

100R

Capacitors

C1,2,3,

5,6

C4 15uF electrolytic

capacitor

C7,8 22uF electrolytic

capacitor

Semiconductors

Id1 PIC16F84 micro

controller

IC2 LTC1285 A/D

converter

IC3 TC55RP5002EZB

+5V low power

voltage regulator

IC4 TLE2425 2.5 voltage

reference

IC5 7660 voltage inverter

D1 5V1 zener diode

D2 1N4148

LED 3mm diameter, 1mA

low current LED

T1 BC557 pnp transistor

Others

11 9 pin D -type female

connector

J2 3 -way detachable

screwed terminals

SW1 push button switch

XT 4MHz ceramic

resonator

(3 pin device)

PCB board

9V PP3 battery

April 2001 ELECTRONICS AND BEYOND

Program List -2 (PS1ON 3(1 data logging program)
PROC RS232logger:

REM PSION 3C OPL test program for RS232 data logger
REM COPYRIGHT to Pei AN, 20/4/98

REM handshake setting: None

REM define local variables to be used in the program

LOCAL term&,baud%, parity%, data%

LOCAL stool, hand%, frame%,srchar%(6)

LOCAL d1%,d2%, dummy%,err%,ret%,len%
LOCAL voltage

REM open the RS232 channel

-LOPEN

REM dedine RS232 configuration parameters

REM RS232 setting: 9600, 8 bit, no parity, 1 stop, no handshake

baud%=15 parity%=0 data%=8

stop%=1 hand%=4 term&=&04002400

frame%=data%-5

IF stop%=2 frame%=frame% OR 16 : ENDIF

IF parity% : frame%=frame% OR 32 : ENDIF

Srchar%(1)=baud% OR (baud% * 256)

Srchar%(2)=frame% OR (parity% * 256)

Srchar%(3)=(hand% AND 255) OR $1100

Srchar%(4)=$13

REM config the RS232 port

err%=IOW(-1,7,srchar%(1), dummy%)

REM PSION output a command to data logger
REM PSION then inputs two data bytes

CLS

FONT 8,8

STYLE 16

AT 15,1

PRINT"PSION DATA LOGGER"

DO

LPRINT CHR$(21); REM output a command byte
len%=1 REM number of data read =1

ret%=IOW(-1,1,d1%,len%) REM input upper 4 bits from logger
ret%=IOW(-1,1,d2%,len%) REM input lower 8 bits from logger
voltage=((dl% AND 15)*256+d2%)*2.5/4096 REM construct conversion data
AT 13,3

PRINT "INPUT VOLTAGE [V]: ";FIX$(voltage,3,6)
pause 2 REM a short pause
UNTIL KEY$=CHR$(13)

ENDP

Program List 3 (TP6 data logger program)
Program RS232 data logger;

{Software driver for PSION/PC RS232 data logger)

{The COM port is configured as Baud rate: 9600/4800/2400/1200
Data bit length:8; Parity Check: None; Stop Bit: 1)

(Copyright to Pei An and Pinhua Xie, 20/4/98}

uses

dos,crt,graph;

var

RS232 address, cam_number,number of COM, code: integer;

dummy:byte;

loggerdata: real;

Procedure detect RS232;

{Universal auto detection of COM base address. User section of RS232 port)
{ $0000:$0400 holds the printer base address for COM1

$0000:$0402 holds the printer base address for COM2
$0000:$0404 holds the printer base address for COM3

50000:50406 holds the printer base address for COMA
$0000:$0411 number of parallel interfaces in binary format)

var

COM:array[1..4] of integer;

kbchar: char;

begin

clrscr;

COM number:=1; (defaut printer)

number of COM:=mem[$0000:$0411]; (read number of parallel ports)

number o- f - COM:=(number of COM and (8+4+2)) shr 1;

COM[1])=- mem- w[$0000:$0400]; (Memory read procedure}

COM[2]:=memw[$0000:$0402];

COM[3]:=memw[$0000:$0404];

COM[4]:=memw[$0000:$0406];

textbackground(blue); clrscr;

textcolor(yellow); textbackground(red); window(10,22,70,24); clrscr;
writeln('Number of COM installed number of_COM:2);

writeln('Addresses for COM1 to COM4: ',COM[1]: ,' , COM[2]:3,' , COM[3]

COM[4]:3);

write('Select COM to be used (1,2,3,4) ');

del ay(1000);

if number_of_COM>1 then begin {select COM1 through COM4 if more than 1 LPT installed}
repeat

kbchar:=readkey; {read input key)
val(kbchar, COM number, code); (change character to value)

until (COM_number>=1) and (COM number<=4) and (COM[COM_number]<>0);

end;

clrscr;

RS232 address:=COM[COM number];

wri teTn('Your selected -RS232 interface: CON',COM number: l);

write('RS232 Address . ', 55232_address:4);

delay(5000);

textbackground(black); window(I,1,80,25); clrscr;
end;

Procedure Write i nterruptenabl e(RS232 address, Output byte: integer);

{to enable interrupt indentification register on certain conditions

output_byte=l, to generate an interrupt flag when a valid serial data is received}
begin

fort[RS232 address+l]:=Output_byte;
end;

Function Read interrupt identi fi cation(RS232 address: integer): integer;

{to read interrupt identification register to check if an interrupt is pending)
begin

Read interrupt_i denti fi cation:=Port[RS232address+2]

end;

Procedure initialize;

(initialize COM to be 9600, no -parity check, 8 bit data and 1 stop bit}
(initialization is made by INTR($14) dx=COM_number-1 for COM_number
Bit functions of al register:

Bit 7,6,5: set Baud rate 111=9600

Bit 4,3 : set parity 00 =none parity

Bit 2 : set stop bit 0=1 stop bit
Bit 1, 0 : set data bit number 11=8 bit)

var

begin

with register do begin

ah:=0; al:=128+64+32+0+0+0+2+1; dx:=COM_number-1;

intr($14, register);

end;

end;

Procedure write port(dumny_address, databyte:byte);

(Output the databyte:byte to Port[RS232_address])

begin

part[RS232_address]:=databyte;

end;

Function Input:byte;

(Input data from Port[RS232address])

begin

Input:=port[RS232_address];

end;

Function data:byte;

{to read data from COM port with valid -data -received detection)

var

dlx,d2x:array [1..1005] of byte;

datax: byte;

begin

repeat until (Read_interrupt_identification(RS232_address) and 1) =0;

(check if a valid serial data is received by the CDM part)

data: -input; (read the received data)

end;

Function voltage:real;

(read voltage from the logger)

var

dunmy,i,d1,d2:integer;

begin

wri te_port(0,1*16+5);

convert);

dl:=data; delay(1); d2:=data; delay(1); (receive two bytes from the logger)

-loggerdata:=(d1 and (8+4+2+1) *256 + d2)* 2.50/4096; {combine the two byte in a voltage)

voltage:=loggerdata;

end;

(send 15=1*16+5 byte to command the logger to

Procedure Diagram;

(A diagram showing the layout of the data logger}

(showing the analogue conversion results)

begin

window(1,1,80,25);

Textbackground(blue);

textcolor(l i ghtbl ve);

clrscr;

repeat

gotoxy(15,18); write('

delay(20000);

gotoxy(15,18); write(' ');

textcol or(green);

gotoxy(15,19); write(' Logger starts loggering');

delay(20000);

gotoxy(15,19); write(' ');

text calar(red);

gotoxy(15,20); write(' Logger sends data to PC');

delay(20000);

gotoxy(15,20); write(' ');

textcol or(red);

gotoxy(24,15); write(voltage:6:3);

textcolor(yel low);

until keypressed;

end;

(*******************MAIN PROGRAM**********************)

begin

detectrs232; (check the number of RS232 ports installed on your pc)

initialize; {initialize the selected RS232 port}

:3,' , write_interrupt_enahl e(RS232_address, 1);

diagram;

end.

Program List 4 (VB5 data logger program)

Private Sub Commandl_Click))

Dim volt As Single

Sleep (10)

MSComml.Output = Chr$(1 * 16 + 5)

MSComml.InputLen = 1

MSComm1.InBufferCount = 0

Do

Do Events

Loop Until MSComm1.lnBufferCount = 2

volt = (AscB(MSComnl.Input) * 256 + AscB(MSComnl.Input)) / 4096 * 2.5

Labell.Caption = format(volt,"0.00009

End Sub

Private Sub Comnand2 Click()

MSComnl.ComnPort = Textl.text

MSComml. InputMode = comInputModeBinary

MSComnl.PortOpen = True

Sleep (100)

End Sub

Private Sub Conmand3_Click))

End

End Sub

Private Sub Form_Load()

End Sub

Modulel.bas

Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

register:registers;

ELECTRONICS AND BEYOND April 2001

