
f f A T U R f 

This month we'lllookat a working version of the serial port driver 
code. 

0 ver the past few installments of this 
series we've discussed the 

development of assembly language 
routines to deal with the serial port cardin a 
practical way. This has involved the use of 
interrupts, which are nasty but largely es­
sential. Ithasalsoinvolved the use of some 
fairly esoteric machine language, as this 
sort of code works right down there with 
the bits and monsters of the hardware of a 
PC. 

While we have discussed the code in 
isolation, we have not seen how it works 
with real world software as yet. Because 
most applications programs which might 
use the serial port will be written in a 
higher level language, like Cor Pascal, we 
must devise a way for such a program to 
communicate with our driver. 

There are several approaches to this, 
E&TT January1990 

STEVE RIMMER 

each with its own advantages and disad­
vantages. We're going to look at one of 
them in detail this month. 

To Drive or Not to Drive 
Over the last few months, we've dis­

cussed how machine language functions 
can retrieve bytes from a circular buffer, 
bytes which have been placed there 
asynchronously by the interrupt handler for 
the serial port card. In devising a strategy to 
make these functions accessible to an ap­
plication program, we must come up with a 
channel of communication between the as­
sembly language code and an application. 

There are four things which the 
machine language driver, whatever that 
turns out to ultimately be, should offer the 
application which calls it. These are as fol­
lows: 

• A setup routine to initialize the serial 
port, the interrupt handler and the baud 
rate. 
• Acharacteroutroutinetosenddatato 
the serial port. 
• A character in routinetogetdata from 
the input buffer. 
• A testroutinetosee if there Is any data 
waitingattheserialportbuffer. 

This could be expanded upon, and 
might well have to be for certain types of 
applications, but these four functions will 
handle basic telecommunications through 
the port. 

The PC offers us a number ways to 
implement these. We'll deal with them 
here in order of decreasing complexity. 

If DOS had its way, it would have you 
implement the serial port driver as a 

49 



PC Hardware Interfacing, Part 13 
''device driver''. This is a special type of 
machine language program which DOS 
loads through the CONFIG.SYS file of 
your system. The ANSI.SYS file is a 
devicedriverwhich is commonly used. 

When DOS boots up, it creates a 
number of "standard" devices, such as 
CON and PRN. These behave somewhat 
like files.lf you do something like this: 

COPYTEXTFILE.DOCPRN 

the contents of the file 
TEXTFILE.DOC will be sent to your 
printer, that is, to the parallel port LPTI. 
The PRN device looks like a file to DOS, 
but all its contents go to the printer port. 
There is also a device called LPTl, by the 
way, which does much the same thing. 

You can write a device driver which 
will create a new device name and make it 
accessible to other programs. For ex­
ample, you could write one which would 
create a device called SERIAL, such that 
reading from and writing to SERIAL 
would handle interrupt driven com­
munications with the serial port. 

This is a flexible way to deal with the 
port, but it has some drawbacks. It means 
that anyone wishing to use a program 
which deals with the port this way must 
have your device driver installed in their 
CONFIG.SYSfile.Devicedriversremain 
in memory, tying some of it up, even when 
the functions they perform aren't needed. 
In addition, communication between a 
program and a device driver is not blind-
inglyfast. . 

Finally, device drivers are pigs to 
write. 

The next most sophisticated ap­
proach is to create a dedicated high speed 
serial software interrupt. In this case, you 
would write a memory resident program 
which would seize an otherwise unused 
software interrupt and dedicate it to driv­
ing your serial port. You would, in effect, 
be adding another INT service to the PC' s 
BIOS. You could then create subfunc­
tions for this interrupt. 

This is a good way to handle some 
sorts of serial applications, especially 
those which will be moving a relatively 
small number of relatively large blocks of 
data. If you were to create your driver such 
that you could pass it a pointer and let it 
hand your application several kilobytes of 
accumulated data with each request, this 
approach would have a lot of merit. 

It's not too good for character by 
character communications, however, 
which tends to be how most serial applica-

50 

tions work. Executing an INT instruction 
takes a considerable amount of time in 
machine terms, with quite a bit more tied 
up in the requisite pushes and pops of the 
handler. This is somewhat at odds with the 
goal of creating a high speed serial device. 

The simplest approach is the least 
flexible but the most functional. It invol­
ves simply writing the driver so it can be 
'bolted on" to your application. The 
driver only exists as part of your program, 
but it's tightly bound to it and suffers the 
least time penalty when your program 
goes to talk to it. 

In this example I've assumed that the 
application program in question will be 
written inC. However, atthe level that this 
driver works there's very little difference 
between languages. You'll find it just as 
applicable to Pascal or compiled BASIC 
with a minim urn of fiddling. 

When you compile a C language 
program the result will be a number of 
machine language functions which be­
have in a predictable way. You can't ac­
tually write a workable driver in C, be­
cause higher level languages rarely 
generate tight enough code to manage a 
serial port efficiently. However, you can 
create assembly language functions 
which look to C like C functions, except 
thatthey'reworkalotfaster. 

A C function takes its arguments as 
integers pushed onto the stack and returns 
things in AX register. Under Turbo C, as­
sembly language functions must preserve 
the SI and Dlregisters if the compiler is set 
to allow for the use of register variables. In 
addition, every assembly language func­
tion must take care to either preserve or at 
least not mangle the BP register, as this is 
what the function which called it was 
using to find its stack arguments prior to 
the call. 

Having written a driver which will 
bolt onto a C language program, all we 
have to do to use it is to include it in the 
linking process ... adding its name to the 
project file under Turbo C ... and call the 
functions it provides as if they were in­
cluded with the compiler. 

This is the complete serial port driver 
written as a machine language module for 
aCprogram.IcalledthisSERIO.ASM,so 
whenlassembleditlgotSERIO.OBJ. 

SERIO SIZE EQU 512 ;THEBUFFER 
SIZE -
A OFF EQU 6 ;THESTACKOF­
FSET 

;THIS MACRO SA VESANYREGS 

THATMIGHTBEUSEDBYTHECOM­
Pll.,ER 
SAVE MACRO 
PUSH SI 
PUSH DI 
ENDM 

;THIS MACRO RESTORES ANY REGS 
THATMIGHTBEUSEDBYTHECOM­
Pll.,ER 
RESTORE MACRO 
POP DI 
POP SI 
ENDM 

SERIO TEXT SEGMENTBYTE 
PUBUC'CODE' 
ASSUME 
CS:SERIO _ TEXT,DS:_ DATA 

;THISROUTINECLEARSTHEBUFF­
ERAND RESETS THE POINTER 

' ; CALLEDAS 
; SerioReset(); 
j 
PUBUC SerioReset 

SerioReset PROC FAR 
SAVE 
MOV AX, DATA 
MOV Ds,Ax 

MOV AX,OFFSETSERIO _BUFFER 
MOV SERIO HEAD,AX 
MOV SERIO-TAll.,,AX 
RESTORE -
RET 
SerioReset ENDP 

;THISROUTINESENDSA CHARAC­
TER OUTTOTHESERIALPORT 

, CALLEDAS 
; SerioPutch(c); 
; intc; 

PUBUC _SerioPutch 

SerioPutch PROC FAR 
PUSHBP 
MOV BP,SP 
SAVE 

MOV BX,[BP+A_OFF] 

MOV AX, DATA 
MOV Ds,Ax 

MOV DX,SERIO BASEPORT 
ADD DX,S -

SUB CX,CX 
SPl: IN AL,DX ;GETMODEM 
STATUS 
AND AL,20H ;CHECKCTSANDDSR 
CMP AL,20H 
JESP2 
LOOP SPl 

E& TT January1990 



SP2: MOV DX,SERIO BASEPORT 
MOV AX,BX -
OUT DX,AL 
RESTORE 
POP BP 
RET 

SerioPutch ENDP 

;THISROUTINERETURNSA 
CHARACfERFROMTHEBUFFER 

; CALLEDAS 
; c=SerioGetch(); 
; intc;/* ifc&OxOlOO,nocharacter*/ 

' PUBUC SerioGetch 

SerioGetch PROC FAR 
SAVE 

MOV AX, DATA 
MOV DS,AX 

MOV BX,SERIO HEAD 
CMP BX,SERIO -TAIL 
JNE SGl -
MOV AX,OlOOH 
JMP SG2 

SGl: SUB AX,AX 
MOV AL,[BX] 
CALL BUMP POINTER 
MOV SERIO =HEAD,BX 

SG2: RESTORE 
RET 

SerioGetch ENDP 

;THISROUTINERETURNSTHENUM· 
BER OFW AITING BYTES 

; 

CALLED AS 
c=SerloTest(); 
intc; 

PUBUC SerioTest 
SerioTestPROC FAR 

SAVE 

MOV AX, DATA 
MOV DS,AX 

MOV AX,SERIO HEAD 
SUB AX ,SERIO TAIL 
RESTORE -
RET 
SerioTest ENDP 

;THISROUTINERETURNSTRUEIF 
CLEAR TO SEND 

, CALLEDAS 
; c=SerloReadyO; 
; intc; 
; 
PUBUC SerioReady 

SerioReady PROC FAR 
SAfE 

E& TT January1990 

MOV AX, DATA 
MOV DS,AX 

MOV DX,SERIO BASEPORT 
ADD DX,4 -
IN AL,DX 
AND AL,OlH 

RESTORE 
RET 
_ SerioReady ENDP 

;THISROUTINESETSTHEBAUD 
RATE 

; CALLEDAS 
; SerioBaud(p); 
; intp;/*baudratedivisor*/ 

' PUBUC SerioBaud 
SerioBaud PROC FAR 

PUSHBP 
MOV BP,SP 
SAVE 
MOV BX,[BP+A_OFF] 

MOV AX, DATA 
MOV DS,AX 

MOV SERIO_BAUD,BX 

RESTORE 
POP BP 
RET 

SerioBaud ENDP 

;THISROUTINEINSTALLSTHE 
SERIAL VECTOR, 

; CALLEDAS 
; SerioOn(p); 
; intp;/*comportlor2*/ 

' PUBUC SerioOn 
SerioOn PROC FAR 

PUSH BP 
MOV BP,SP 
SAVE 
MOV BX,[BP+A OFF] ;COMPORT 
TOUSE -

MOV AX, DATA 
MOV DS,AX 

MOV AX,O 
CMP SERIO SEG,O ;DON'TIN· 
STALL TWICE 
JE SMl 
JMPSM3 

SMl: CMP BX,2 
JNE SM2 

MOV SERIO BASEPORT,02F8H 
MOV SERIO -VECfOR,OBH 
MOV SERIO =MASK,OF7H 

SM2: CU 

MOV AH,35H 
MOV AL,SERIO VECTOR 
INT 21H -
MOV SERIO SEG,ES 
MOV SERIO= OFF,BX 

MOV AL,SERIO VECTOR 
PUSHDS -
MOV DX,OFFSETSERIO HANDLER 
PUSHCS -
POP DS 
MOV AH,25H ;CHANGETHE 
SERIALINTERUPTVECTOR 
INT 21H 
POP DS 

IN AL,21H 
AND AL,SERIO MASK 
OUT 21H,AL -

MOV DX,SERIO BASEPORT 
ADD DX,3 -
MOV AL,80H 
OUT DX,AL ;OPENDLAB 

MOV AX,SERIO BAUD ;GETTHE 
BAUDRATEDIVISOR 

MOV DX,SERIO BASEPORT 
ADD DX,l -
MOV AL,AH 
OUT DX,AL ;SENDlllGHORDER 

MOV AX,SERIO BAUD ;GETTHE 
BAUDRATEDIVISOR 
MOV DX,SERIO BASEPORT 
OUT DX,AL ;SENDLOWORDER 

MOV DX,SERIO BASEPORT 
ADD DX,3 -
MOV AL,7 ;ANDTHECFWBYTE 
OUT DX,AL ;ALSOCLOSEDLAB 

MOV DX,SERIO BASEPORT 
ADD DX,l -
MOV AL,OlH 
OUT DX,AL ;INTERUPTENABLE 

MOV DX,SERIO BASEPORT 
ADD DX,4 -
MOV AL,OSH 
OUT DX,AL ;MODEMCONTROL 

MOV AX,l ;SAYITWORKED 

SM3: STI 
RESTORE 
POP BP 
RET 
SerioOn ENDP 

;THISROUTINEUNDOESTHEVEC­
TOR 
; 
; CALLEDAS 
; SerioOff() 
; 
PUBUC SerioOff 
SerioOff-PROC FAR 

51 



MOV AX, DATA 
Mov Ds,Ax 

CMP SERIO SEG,OOOOH 
JE SOl -

cu 
IN AL,21H 
MOV AH,SERIO MASK 
NOT AH -
OR AL,AH 
OUT 21H,AL 

MOV DX,SERIO BASEPORT 
ADD DX,3 -
IN AL,DX 
AND AL,7FH 
OUT DX,AL 

MOV DX,SERIO BASEPORT 
ADD DX,l -
MOV AL,O 
OUT DX,AL 

MOV DX,SERIO BASEPORT 
ADD DX,4 -
MOV AL,O 
OUT DX,AL 

MOV AL,SERIO VECTOR 
PUSHDS -
MOV DX,SERIO OFF 
MOV DS,SERIO -SEG 
MOV AH,25H ;CHANGEINTERUPT 
VECTOR 
INT 21H 
POP DS 

MOV SERIO OFF,OOOOH 
MOV SERIO=SEG,OOOOH 

SOl: STI 
RET 
SerioOff ENDP 

;THISROUTINEHANDLESTHE 
SERIALINTERUPTFORTHESERIO 
SERIO HANDLER PROC FAR 
STI ;ENABLEOTHERINTERUPTS 
PUSH AX 
PUSHBX 
PUSH CX 
PUSH DX 
PUSH SI 
PUSHDI 
PUSHDS 
PUSHES 

MOV AX, DATA 
MOV DS,AX 

MOV DX,SERIO BASEPORT 
IN AL,DX -

MOV BX,SERIO TAIL 
MOV SI,BX -

CALL BUMP POINTER 
MOV SERIO=TAIL,BX 

E&1T January1990 

MOV [SI],AL 
cu 
MOV AL,20H ;SIGNALENDOFIN­
TERUPT 
OUT 20H,AL 
STI 

POPES 
POP DS 
POP DI 
POP SI 
POP DX 
POP CX 
POP BX 
POP AX 
IRET ;RETURNTOCALLING 
CODE 
SERIO HANDLER ENDP 

BUMP POINTER PROC NEAR 
PUSH AX 
MOV AX,OFFSETSERIO BUFF-
ER+SERIO SIZE -
INC BX -

CMPBX,AX 
JGE BUMP PTRl 
POP AX -
RET 

BUMP PTRl: 
MOV BX,OFFSETSERIO BUFFER 
POP AX -
RET 
BUMP POINTER ENDP 
SERIO-TEXT ENDS 

DGROUP GROUP DATA,BSS 
DATA SEGMENTWORDPUBUC 

'DATA' 

SERIO BASEPORT DW 03F8H 
SERIO -VECTOR DB OCH 
SERIO-MASK DB OEFH 
SERIO-OFF DW OOOOH 
SERIO-SEG DW OOOOH 
SERIO-BAUD DW 0060H 
SERIO -TAIL DW OFFSET 
SERIO-BUFFER 
SERIO-HEAD DW OFFSET 
SERIO-BUFFER 
SERIO-BUFFER DB SERIO SIZE 
DUP(?r -
DATA ENDS 

BSS SEGMENTWORDPUBUC 
'BSS' 

BSS ENDS 
END 

The driver is a bit complex when you 
frrst come upon it, but it turns out to be pret­
ty easy to deal with from the point of view of 
aCprogram. 

We'll discuss the workings of the 
driver, and how to interface to it, in the next 
installment of this series • 

IT TAKES 
MORE 

THAN BLOOD 
TO KEEP 

THE CROSS 
RED. 

To The Red Cross, your 
money is also precious. 
We've served Canada for 
almost 100 years. And we 
can only continue with the 
financial support of people 
like you 

Your generosity is our 
life -blood. Please give what 
you can as soon as you can. 
Contact your local Red Cross. 

We welcome VISA and 
MASTERCARD. 

HELP KEEP 
THE CROSS RED. 

+ 
The Canadian 

Red Cross Society 




