
f [ A l U R [ 

PC 
Part12 

This month we'lllookatsomeadditional interfacing code for the 
serial port card, including the actual functions which allow higher 

level languages to deal with interrupt driven serial data. 

Last month we saw how the serial port 
hardware could be driven by a back

ground interrupt handler function. While 
it's possible to deal with it as a foreground 
task by "polling" it, much as is done with 
simpler computers like the Apple][+, this 
is both inefficient of the computer's 
resources and probably not all that effec
tive a way to deal with the problem even if 
your program has time to burn. There's too 
high a chance of your machine's processor 
not being around when a byte comes in 
and, as such,losing data. 

The driver fragment we looked at last 
month illustrated a way to have the card it
self call a routine which would store an in
coming byte in a circular buffer, oblivious 
to whatever the computer happened to be 
doing at the time, and then return to the 
foreground task. This is really the correct 
way to deal with asynchronous serial com
munication. 

There were several important ele
ments left out of the code from last month. 
One fairly obvious element which was 
missing was a way to get the bytes out of the 
circular buffer for use by whatever program 
is supposed to deal with the incoming data. 

This month we'll have a look at the 
foreground part of the driver, the routines 
which are called to manage the queue. 

Heads or Tails 
As you will recall from last month, a cir
cular buffer, or ''queue'', has two pointers 
into it The first pointer, the' 'head" ,is used 
to indicate where the next byte will go when 
an interrupt is thrown by the serial card. 
This was pretty well covered in the last in
stallment of this series. The other pointer, 
the' 'tail'', indicates where the nextcharac
terto be retrieved from the buffer lies. 

After each pointer operation the 
pointers in question are incremented cir
cularly, that is, they're run through a routine 
38 

STEVE RIMMER 
which sets them to the next position in the 
queue. This will be the next location in 
memory unless the next location lies 
beyond the agreed upon end of the buffer, in 
which case it will be the startofthe buffer. 

There are several states which a cir
cular queue can be in. They are as follows: 

Empty: This is indicated by the head 
and tail both pointing to the same location 
in memory. 

Data pending: This is indicated by 
the head pointing to a place further along 
in the buffer than the tail. Note that this 
may actually place the head before the tail 
in memory, as it may have "wrapped" 
around the ed of the buffer. This is still a 
legal condition. 

Over run: This is indicated by the 
head having wrapped clear around the 
buffer and passed the tail. If the buffer was 
one hundred bytes long, this would hap
pen if more than a hundred bytes were 
written into the buffer before bytes began 
to be removed from it. 

We have spoken this far about the 
head and tale as being pointers, which in 
theory they are. For example, you could 
usetheES:Diregisterstopointtotheplace 
in memory for the next byte to be stored, 
and then store it there with a single 
STOSB instruction, which is very elegant. 

Whether of not you should, in fact, 
implement a queue this way will be depen
dant upon how big a buffer you think you 
need. A true pointer on a PC is a thirty-two 
bit number, and a very awkward quantity 
to work with at the assembly language 
level. You will find that you'll have to do a 
lot of juggling between the DI and ES 
registers, for example, to see if the pointer 
hasexceededtheendofthebuffer. 

If you wanted to write a terminal 
program which used all the otherwise un-

spoken-for DOS memory for as a huge 
serial buffer ... making the possibility of an 
over run error condition exceedingly 
remote ... this would be a good way to 
handle it. On the other hand, if you were 
writing a modem program in which the 
maximum chunk of data sent at a time 
could never exceed a few kilobytes, it 
amounts to a considerable degree of over
kill. Sixteen bit numbers will suffice in 
this situation with room to spare. 

If the buffer is a fixed area in memory, 
that is a buffer created with the DB direc
tive in your assembly language program, 
you can address it very easily like this. 
We'll allow that the position in the buffer 
being addressed is held in the BX register. 

MOV [BUFFER+ BX],AL 

If it's an allocated buffer, you can 
load the buffer segment into ES and set DI 
to point to the buffer itself. The buffer can 
be addressed like this. 

MOV[DI+BX],AL 

Both of these are really pointers in 
disguise, but the only number you have to 
work with is a simple sixteen bit integer. 

Fetching Bytes 
There are two primary functions which 
must be performed on the byte queue of a 
serialcardbyaforegroundtask. Thefrrstis 
to test the queue to see if data has been 
placed there by the interrupt handler since 

· the last time all the previous data was 
removed. The second is to be able to ac
tually remove data, that is, to fetch bytes 
from the buffer. 

The frrst function can be handled very 
simply with the following code. This as
sumes that we'll be using sixteen bit of
fsets into the buffer rather than true thirty
two bit pointers. 

TEST SERIALPROCNEAR 
MOVAX,SERIO _HEAD 

E&TTDecember1989 



SUBAX,SERIO TAll. 
RET -
TEST_ SERIALENDP 

If you call this function and AX is zero, 
there are no bytes waiting in the buffer. It 
may seem that this function will return the 
number of bytes waiting in AX, but this is 
not actually true. Recall that the buffer is 
circular. The head pointer can point to 
memory which lies before the tail pointer in 
absolute memory locations and still in front 
of it as far as the buffer is concerned. If this 
happens ... a common occurrence, actual
ly ... the number returned in AX will be 
enormous and quite meaningless. 

If this function returns a non-zero 
value you can retrieve the next byte in the 
buffer with the following function. 

SERIO_ SIZEEQUSOO 

FETCH SERIALPROCNEAR 
MOVBX,SERIAL TAll. 
MOV AL,[SERIO BUFFER+ BX] 
CALLBUMP POiNTER 
RET -
FETCH_SERIALENDP 

BUMP _POINTERPROCNEAR;INCRE
MENT A POINTER 
PUSHAX 
MOV AX,OFFSETSERIO BUFF-
ER+SERIO SIZE -
INCBX -

CMPBX,AX 
JGEBUMP PTRl 
POPAX -
RET 

BUMP _PTRl:MOVBX,OFFSET 
SERIO BUFFER 
POP AX 
RET 
BUMP _POINTERENDP 

You will notice that this uses the same 
pointer adjustment routine as turned up in 
the interrupt handler last month. In a real 
world driver, it's convenient to actually 
use the same code, as the head related 
functions and the tail related functions 
generally live in the same program. This 
ensures that both the head and tail pointers 
will always be treated the same way. 

There are a number of other things 
you might want to be able to do with the 
buffer. For example, if you wanted to 
throw away all the data in the buffer you 
could use this routine. 

FLUSH BUFFERPROCNEAR 
MOVSERIO HEAD,O 
MOVSERIO -T All.,O 
RET -
FLUSH_BUFFERENDP 

This simply sets both pointers to the 
start of the buffer again. 

E&TTDecember1989 

Real World Data 
In a complex program which wants to in
terface to a generic serial driver, the author 
ofthedrivermustoften be unaware of what 
the author of the foreground application 
will want to do with the serial port. For ex
ample, a terminal program which might 
send over complex screens with lots of 
ANSI codes and data could well send 
down eight or ten kilobytes of data without 
pausing. The foreground task ... the ter
minal program ... would expect the serial 
driver to deal with this without hiccuping 
and losing some of it. On the other hand, a 
simple XMODEM program would never 
encountermorethanonehundredandthir
ty-two bytes of data before the foreground 
task fetcheditfrom the buffer, chewed on it 
andthensentthecommandbackuptheline 
for another chunk. 

There are a number of useful ways in 
which the basicdriverconcept we've been 
looking at can be enhanced. The first one 
involves allowing the foreground task to 
specify the size and location of the buffer. 
Under the C language, for example, a 
programmer can allocate blocks of 
memory which are then accessible 
through pointers. Since the programmer 
writing the application which will talk to 
the serial port should know what sort of 
data is likely to arrive, it makes more sense 
to have the calling task allocate the buffer 
and pass a pointer to it to the serial port 
driver. 

This is how the PC BIOS serial hand
lerprobably should have worked. 

If this is the case, the as yet undis
cussed code which initializes the serial 
card, sets up the interrupts and so on would 
be passed a pointer to a serial buffer, that 
is, a segment value and an offset value. Al
lowing that these will be stored in memory 
as BUFFER_SEGMENT and BUFF
ER_OFFSET, you would load bytes into 
the buffer like this. We'll allow that the 
value _DATA is the data segment where 
all the variables get stored for our driver. 

PUSHAX 
MOVAX, DATA 
MOVDS,AX 
POP AX 

MOVES,BUFFER SEGMENT 
MOVBX,BUFFER- OFFSET 
MOVES:[BX],AL -
CALLBUMP POINTER 

Likewise, you would get a byte from 
the buffer like this. 

MOVAX, DATA 
MOVDS,AX 

MOVES,BUFFER_SEGMENT 

MOVBX,BUFFER OFFSET 
MOV AL,ES:[BX] -
CALLBUMP _POINTER 

This assumes that a record is kept of 
the original value for BUFFER_ OFFSET, 
suchthatBUMP _POINTERcouldrestore 
it when a buffer pointer had to wrap 
around past the end of the buffer. 

The value of SERIO _SIZE would also 
be passed to the interrupt setup routine, 
such that the calling code would be able to 
definethesizeoftheinterruptbuffer. 

This offers us a different way to look 
at handling serial data. For example, let's 
say that we wanted to send a screen of text 
from one computer to another over a serial 
link. One way to get this together would be 
to fetch each byte from the screen, add in 
some ANSI escape sequences if there 
were different colours and such and send 
the data through the port. At the other end, 
the receiving software would fetch the 
bytes from the serial port driver's buffer, 
as we've seen, and print them to the 
screen. This is very, very slow. 

There's a better way. Suppose we 
were to define the serial data buffer as 
being the screen buffer itself. We'll tell the 
serial port driver that this buffer is at least 
four thousand bytes long. The sending 
computer would just transmit the raw con
tents of its screen buffer and the receiving 
interrupt handler would place it in exactly 
the right place, thinking that the screen 
bufferisreallyitsqueue. 

It would, of course, be essential to 
flush the buffer after each screen was sent 
as allowing the head pointer to actually 
wrap would be messy. Obvious} y, there is 
no need to retrieve characters through the 
tail pointerin this example, as they will al
ready be in their ultimate destination. 

The slick part of this approach is that 
itreallydoesn'tinvolveanymodifications 
to the serial driver as we've discussed it 
thus far. It simply makes clever use of the 
concept of a circular serial queue. 

Rubber Biscuit 
This driver is still a long way from being 
complete. We haven't seen how it gets 
hooked into the hardware of a PC as yet, 
norhavewereallytalkedaboutinterfacing 
it to higher level code. The latter subject is 
one which calls for a bit of forethought and 
head scratching to come up with a system 
which is both flexible enough to make the 
driver worth using and fast enough to im
prove on the performance of the BIOS and 
simple polled communications. 

We'll continue to wear the problem 
downnextmonth. • 

39 




