
f [A l U R [

This month we'll start looking at the machine languagedriverforthe
PC serial port card. This will Include the mysterious and justifiably

feared interrupt handler mechanism.

W ith the design of a PC serial port
behind us, we can start looking at

the software to drive the serial port card.
Obviously, the exact nature of the
software, and where it will reside, will be
determined by you application. However,
this discussion will show you how to write
drivers for hardware which require that the
software really tickle things at a very low
level.

The serial card,like most of the more
interesting PC hardware peripherals, is an
asynchronous device. There's no telling
when data will appear at it, nor how much
of it is likely to turn up at a time. As such,
we have to find sneaky ways to deal with
its requirements of the computer.

Interrupts for Free
As we have discussed, the serial port card
can be dealt with in a number of simple

42

STEVE RIMMER
ways, most of them involving ''polling''
the status port of the card to see if there's
data waiting in the input buffer. The phrase
"input buffer" may be a bit misleading
when it comes to the 8250, the buffer
which the chip provides is only one byte
long, whichisn'tmuchofadatastash.

The problem with polling the port is ·
that the program doing the polling has to
check the port at least as frequently as the
data is likely to come in, and it has to be
able to handle any data it finds in the inter
val between two incoming characters, or
data will be lost and the information being
transmitted over the serial port will be
seriously mangled. On a good day this
simply means typing up your whole com
puter is a largely mindless task. On a bad
day it doesn't work at all-if the baud rate
is high enough or the data handling
process complex enough, polling univer-

sally falls apart.
This is why the 8250 provides for an

interrupt driven strategy as well. The chip
can be programmed to throw an interrupt
every time a byte comes in, such that the
computer can stop what it's doing, save its
registers, get the byte, handle it, restore its
registers and return to what it was up to, all
without the operator of the machine know
ing that anything has happened.

The usual function of an interrupt
driven serial program is to store the in
coming bytes in what is called a' 'circular
queue''. This may take a bit of explaining.
While serial data frequently comes in at a
rate which exceeds the ability of the host
software to process it, it rarely does so for
any length of time. For example,
XMODEM style file transfers work by
sending a block of data, say one hundred
and twenty-eight bytes, and then waiting

E& TT November 1989

for an acknowledgement from the other
end of the conversation before sending
another block. Even if the block itself
comes down the wire very quickly, the
receiving end will have a chance to
process it- in this case, possibly to write
the block out to a disk file, in the interval
between acknowledgements.

The only difficult part is being able to
stash the bytes somewhere until the pause.
This is how the interrupt handler works. It
maintains three things which it works
with. These are the data buffer, the head
pointer and the tail pointer. If you under
stand these you'll have a much better idea
of how to successfully process
asynchronous data from any external
hardware device.

For what it's worth, the data from a
PC' s keyboard is handled in exactly this
way.

The data buffer can be any length.
Let's say that it's five hundred bytes long
for the moment. This would not actually
be a very good choice for most applica
tions- the buffer size should be a multi
ple of the block size in which your data is
likely to appear, but it will do for this ex
ample.

The head pointer and the tail pointer
start by pointing to the start of the buffer.
The buffer is said to be empty initially.

When a character comes in, it's
placed where the head pointer points. The
head pointer is then passed through an in
crement routine which increments it and
then checks to see if it has exceeded the
end of the buffer, which it will not have
done, as there are still four hundred and
ninety-nine bytes free. If it had exceeded
the end of the buffer the increment routine
would reset it to point to the beginning.
Mter five hundred bytes, the next byte
which comes along will automatically
overwrite the first byte in the buffer.

The buffer thus behaves like a cir
cular carousel as far as the data is con
cerned. As it's incremented, the head
pointer always runs around the buffer.

At the same time as all this is happen
ing, hopefully, there will be a foreground
task which takes bytes out of the buffer. It
does this in much the same way. It checks
to see that the head pointer and the tail
pointer do not point to the same location, a
condition which would indicate that the
buffer was empty. Assuming that this is
not the case, the code which retrieves data
fetches the bytecurrentlypointed to by the
tail pointer and then runs the tail pointer
through the aforementioned increment
routine.

E& TT November 1989

As you can see, then, the tail pointer
will chase the head pointer around the cir
cular queue, the gap between them grow
ing and shrinking based on the difference
between the speed at which data is appear
ing at the serial port and that of the
software which is handling it in the
foreground. However, as long as the buff
er is big enough to allow for this slack, no
data will ever get overwritten. By the time
the head pointer returns to the start of the
buffer, the tail pointer should have
retrieved the bytes that were there.

Having the head pointer overrun the
tail pointer is really the only potential fail
ing of this system. This will happen if the
program which fetches the bytes consis
tently does so at a slower rate than the data
appears at the serial port, and if this
process continues long enough to fill the
buffer. Unfortunately, there isn't really
any way for the interrupt handler to cope
with a buffer overrun condition which
does not involve losing data. It has a
choice of either refusing to handle any
more input until the tail pointer moves, in
which case incoming data will get lost, or
it can overwrite the tail pointer, in which
case previously stored data will get
crunched.

In writing software which deals with
interrupt driven serial data, it's important
to make sure that the buffer is checked and
cleared frequently, and that you allow for
an interrupt driver data buffer which is big
enough to handle the worst case of a
foreground program going for lunch.

A Byte of Code
Here's a simple interrupt handler in
machine language. This is just the handler
mechanism itself- there's a lot of ancil
lary code which accompanies it.

SERIO_ SIZEEQUSOO

;THISGOESINTHECODESEGMENT
SERIO HANDLERPROCFAR
STI;ENABLEOTHERINTERRUPTS
PUSHAX
PUSHBX
PUSHCX
PUSHDX
PUSHSI
PUSHDI
PUSHDS
PUSHES;SA VEAFFUCTED REGISTERS

MOVAX, DATA
MOVDS,Ax;GETTHELOCALDATA
SEGMENT

MOVDX,SERIO BASEPORT
INAL,DX;GETTHEBASESERIALPORT

;ANDGETTHEBYTEW AITING
MOVBX,SERIO HEAD
MOVSI,BX;HANDLEHEAD J>OINTER
CALLBUMP POINTER
MOVSERIO -HEAD,BX
MOV[SI],AL;SA VEBYTE

cu
MOVAL,20H;SIGNALENDOFINTER·
RUPT
OUT20H,AL
STI

POPES
POPDS
POPDI
PO PSI
POPDX
PO PCX
PO PBX
POPAX;RESTOREREGISTERS

IRET;RETURN FROM INTER
RUPT
SERIO HANDLERENDP

BUMP POINTERPROCNEAR;INCRE
MENTAPOINTER
PUSHAX
MOVAX,OFFSETSERIO BUFF-
ER+SERIO SIZE -
INCBX -

CMPBX,AX
JGEBUMP PTRl
POPAX -
RET

BUMP PTRl:MOVBX,OFFSET
SERIO-BUFFER
POP AX
RET
BUMP _POINTERENDP

;THISGOESINTHEDATASEGMENT
DGROUPGROUP DATA, BSS

DATASEGMENTWORD-PUBUC
'DATA'

SERIO BASEPORTDW03F8H
SERIO-TAILDWOFFSETSERIO BUFF-
ER - -

SERIO HEADDWOFFSET
SERIO-BUFFER
SERIO =BUFFERDBSERIO _SIZE DUP(?)

Through an as yet mysterious proces
ses, this bit of code will be called every
time the 8250 senses a byte in its input
buffer and thereby throws an interrupt.
Now, this is a very simple serial interrupt
handler- for one thing, it's under the
belief that the only reason that an 8250 in
terrupt might come down the pipe would
be because a character is waiting. In fact,
as we'll see later on, there are lots of other
reasons and it would be prudent to have
the handler check the 8250 interrupt iden-

43

Index
November 1989

Atlas Electronics 18
Canada Remote Systems cover
Computer Parts Galore . insert
Dell Computer Corp 2, 3
ECG Canada cover
EMJ Data 4, insert
Exceltronix46, 47
Fembank Electronics
Systems cover
Glenwood Trading Co 29
Hammond Manufacturing
Co. Ltd cover
Information Unlimited 29
KB. Electronics 33, 41
McGraw- Hill.. 13
Orion 20, 21
Paco Electronics cover
RETSof Toronto 7
The Pin Factory 39

For Advertising
Information Call
(416}445-5600

Fax: 416-445-8149

COMPUTER PARTS SALE: For
XT/AT/386 Compatibles. IC. Tester
Adapters, Fax, Logic Analyzer Cards.
Discount Prices, Catalogue. Write HES,
P.O. Box 2752 Stn.-B, Kitchener,
Ontario N2H 6N3

Power Supply-Versatile. Plus 1-15V
(3A), minus 1-15V (1.5A) and +5V
(1 .SA)- with digital display of voltage and
current. Includes 60 Hz TIL output.
Detailed plans $5.95. SASE brings infor
mation. Classic Designs, Box 142,
Lachine, PO H8S 4A6.

44

For Advertising InformatiOn Call:
(416) 445-5600 Or Fax:

416-445-8149

PC Hardware Interfacing, Part 11
tification register to make sure that the
data atthe input bufferreally is valid.

We'll deal with that another time,
however.

When this function is called, the in
terrupt enable flag of the 8088 will have
been switched off by the 8088. This
means, for example, that if a keyboard
character showed up while this routine
was deliberating it would be lost. As such,
the first thing to do is to tum this flag back
on with the STI instruction. It's desirable
to disable interrupts for as brief a period as
possible on a machine like the PC which
relies upon them so heavily.

Thenextthingtodo is to preserve any
registers which might get mangled in the
course of executing the code of the hand
ler. We do this by pushing them onto the
stack. It's a good idea to just stick all the
common registers up there, as in the
course of developing an elaborate inter
rupt handler you may use registers you had
notinitiallyplanned upon, which can lead
to some spectacular system crashes that
will be very hard to debug later on.

The actual interrupt itself saves three
words on the stack before the processor
gets to our handler. These are the current
instruction pointer and code segment,
which the interrupt will require in order to
return to place in the foreground code
which it got interrupted from, and the flags
register. As such, we can happily trash the
flags register without preserving it ex
plicitly, as the 8088 does this one for us.

The next task is to fetch the data seg
ment which the head and tail pointers and
the data buffer live in. If this routine was
part of a driver which was a resident code
module, for example, everything would
be in the same segment. In this case you
would replace this

MOVAX, DATA
MOVDS,AX

with this

PUSHCS
POPDS

The second version just makes the
current data segment equal to the current
code segment. The code segment is, by
definition, the segment in which our hand
ler 1i ves when it's being executed.

The next bit of code fetches the byte
which has been received- the input buff
er of the 8250 lives at the base port ad
dress. We then fetch the head pointer
value and save the byte to it. The

BUMP _POINTER routine handles the
circular increment process, as we've dis
cussed.

In this case we don't really use
pointers but, rather, offsets into the serial
data buffer. There's a good reason for this
-on an 8088 pointers are thirty-two bits
long, or four bytes, while these offset
values are only sixteen bits. Since our
buffer is somewhat less than sixty-four
kilobytes in length, about sixty-three and
half kilobytes less - we can get away
with sixteen bit numbers, saving some
space andsomecode.

The next bit of code is very
mysterious.

CLI
MOVAL,20H
OUT20H,AL
STI

This has to do with the 8259 interrupt
controller chip in the PC, which we
haven't really had to deal with as yet. The "
8259 allows the PC to cope with multiple
interrupt sources, serving as a traffic cop
when multiple interrupts happen at once.
It makes sure that each hardware interrupt
winds up having the processor call the cor
rect vector, and it handles interrupt
priorities.

The 8259 must know when our inter
rupt is done so it can be allowed to fire off
another one if needs be. The aforemen
tioned mysterious code is an "end of
interrupt'' signal. Because it would con
fuse the hell out of the 8259 if an interrupt
happened in between these two instruc
tions, we tum off the interrupts for the
brief time during which the end of inter
rupt is being passed to the interrupt con
troller.

We'll speak of the interrupt control
ler in greater detail in future installments
of this series.

The rest of the handler simply res
tores the registers and then returns from
the interrupt.

Vectors in Space
While this should explain the mechanism
of a very simple handler, there's stillalotof
additional code required to make this thing
into a workable serial port hardware
driver. As it stands, this elegant little hand
ler is sitting in space doing nothing be
cause the PC doesn 'tknow ofits existence.

Next month we'lllook at how it gets
hooked into the guts of a PC so that it really
starts to grab those bytes and bounce them
into the buffer of your choice.

E& TT November 1989

