
f [A T U R [

Last month we got the PC serial card working internally, but left it
without any way to communicate with the outside world.

This time around we'll have a look at finishing up the hardware
involved in adding this useful facility to the design.

Despite the obvious importance of
doing so, making our emerging

serial card actually able to communicate
with external devices is pretty simple.
There's no complex binary math to con
cern ourselves with, and really very little
hardware. Of course, the hardware is a bit
obtuse, but this is to be expected when one
isdealingwithaftftyyearoldstandard.

The only tricky thing about serial
communications is that it's designed to
work with hardware which really predates
microcomputers by quite a long while.
Whereas everything inside a computer
uses predictable logic levels and timing,
serial data is a world unto itself. Regret
tably, it's something which must be en
dured, having become entrenched in our
universe.

Bilevel Tuba Solo
The ftrst serial devices were teletypes,
which puts the origin of this form of com
munication back several decades. Early
teletypes were wholly mechanical, with
lots of solenoids and relays and numerous
otherthingstooarcaneandhorribletocon
template. They did use these devices to

E& TT October 1989

STEVE RIMMER
synthesize a crude form of electronic
logic, however. A teletype took keyboard
input, translated it to serial data, sent said
data over wires and ultimately turned it
intohardcopyatthefarendoftheline.

Big, clunky solenoids that can drive
an old style print mechanism do not run
cheerfully on five volts. For various
reasons, the logic levels of those old
teletypes, and hence of our modem serial
communications, were such that a posi
tive voltage was considered to be one and
a negative voltage zero. Zero volts ... and,
in fact, anything within several volts ofit ...
was and is undefmed.

The original range was forty-eight
volts either side of zero. Contemporary
serial devices use twelve volts. However,
because of the way this system is struc
tured, anything beyond three volts posi
tive is considered to be a logic level of one,
and anything beyond three volts negative
is a logic level of zero. As such, 'some
devices use plus and minus ftve volts and
get away with it.

The advantage of this bipolar system
is actually fairly apparent. Devices which
use differing voltage levels can communi-

cate without specialized line drivers. In
addition, bipolar logic levels can live with
a great deal more voltage loss because of
line resistance before they start losing
data. This isn 'tmuch of a problem now un
less you'll be driving serial data over ftfty
feel of cable, by it impressed the teletype
guys to no small end way back in the mid
dle ages.

The only real problem facing the
hardware we're about to look at, then, is
converting the PC's T1L logic levels to
these rather more obtuse ones and back
again. As we'll see, there are special parts
to do this for us. The 1488 and 1489
chips ... as are found in just about every
microcomputer serial port design ... con
veniently change T1L logic levels to
serial port logic levels and back again.

The actual serial lines to be interfaced
are something of a wonder as well, once
again dating back into the mists of prehis
tory. In theory, serial data can be managed
using only three lines, one of which is
ground. Labeled TXD and RXD on our
schematic, these things send and receive
serial information respectively. As long as
the hardware at the other end of the serial

9

PC Hardware Interfacing, Part 10

·~v __
GNO __

+11!V __
-11!V __

RSEr IIIR

co co
01 01

II! II!

Ill Ill
D4 D4
Oil Oil

~ ~
07 07

AM
lllif OISlll

I()Sm

Nl IiiB1"i''
A1 msm
Nl Nl
NJ A1

M Nl

N> CS1

10 CSD
A1 Cl!ii
NJ

Nl XTA1.1

AEN

RCLK

Figure 1. Adding the serial hardware interface. Numbers to the right of the drawing are
RS-232C Interface pins.

link is up for dealing with the data at the
rate our computer wants to send it, all will
be well.

In practice, this is usually the case
with contemporary computers, but it
didn't used to be. As such, serial connec
tions also include some "handshaking"
signals which allow the sending computer
to ask the receiving computer whether it's
free to receive a byte and the receiving
computer to answer. The .IIT.R line tells
the computer on the other end that the
local machine can accept a byte of serial
information. It means "data terminal
ready". The CIS line inquires as to the
status of the remote computer. It means
"cleartosend".

There's also a "carrierdetect"line ...
marked CD on the schematic ... which may
or may not be required, depending upon
your application. This tells the host com
puter whether there is a modem carrier
present at the serial port's attached
device ... which only means something if
theattacheddeviceis,infact,amodem.

The ring indicator line ... RI on the
drawing ... can be used to tell the program
driving the serial port that the telephone is
ringing. Th'e 8250 can be programmed to
generate an interrupt when this line chan-
10

ges state, so it's quite possible to write
software which pops up out of the back
groundonlywhensomeonecallsin. We'll
look at this sort of driver a bit later on.

The serial port's oscillator is a simple
crystal and two inverters, a pretty standard
way to handle one of these things. The fre
quency of the crystal is chosen to allow the
internal frequency divider of the 8250 to
generate common standard baud rates.
This is the same frequency that the actual
ports in a PC uses, as well as most other
implementations of this chip.

I should point out that this schematic
is not complete ... I've deliberately omitted
the power connections and such to the
chips in order to keep the wiring as clear
and easily understood as possible. If you
actually elect to build this card as it stands,
you'll want to fill in these details. In most
cases, though, you will probably want to
build variations on it. Basic serial ports for
the PC are as common as politicians at
election timeandjustas easy to find.

Testing the Serial Port
Exercising the card to test all its facilities
actually requires quite a bit of sophisti
cated software and hardware. However, if
we allow that the actual chip is probably

performing properly, we can check the
basiccircuitrywithafewsimplecodefrag
ments. To make sure that the fundamental
communications facilities of the serial port
are actually working, 'let's write a very
basic terminal program.

To begin with, you don't actually
need a second terminal or computer to test
a serial port. Because an RS232 port has
separate incoming and outgoing data
lines, it can send and receive data at the
same time. As such, it's quite easy to test
the beast by simply connecting the TXD
and RXD lines together ... that's pins two
and three... and sending data out. If the
data comes back, the card's working.

If you have a terminal or modem
program for your PC ... such as Telix, Q
Modem, CrossTalk and so on ... you can
test the serial port with this. However, as
we'll be looking at writing proper drivers
for the port beginning next month, you
might feel like getting your fmgers dirty
withabitofassemblylanguagenow.

In order to talk to the board at its most
primitive level, we must initialize the
card ... set its baud rate and other com
munications parameters ... and then create
a loop in which our test program polls for
keyboard and serial data. If it finds a
character waiting at the keyboard, it sends
the character to the serial port. If it finds a
character at the serial port, it sends the
character to the screen.

There are a few holes in this simple
model which make it unsuitable for use as
a real terminal... things like interrupts,
character translation and a few other
things enter into it. .. but it's good enough
for testing.

All of the following assumes that you
have jumpered pins two and three of the
card. I should point out that this test will
work on any serial port configured as
COMl on a. PC ... you can use a known
serial port to test the test program if you're
not sure ofit.

To begin with, we must set the baud
rate. We'll use three hundred baud here,
although the card will support up to fifty
six kilobaud if you've used reasonably
good parts.

MOVDX,3FBH
MOVAL,SOH
OUTD:x,AL;OPENDLAB

MOVDX,3F8H
MOVAL,SOH
OUTD:x,AL;SEfLOWORDERBAUD

MOVDX,3F9H
MOVAL,OlH

E& TT October 1989

1.5K 1.8432
Mhz

.1 uF

1.5K

Figure 2. A crystal controlled oscillator to drive the 825D serial port circuitry.

OUTDx,AL;SETIDGHORDERBAUD

MOVDX,3FBH
MOVAL,lAH
OUTDx,AL;SETCFW

We'll get into how this works in more
detaillater on.

Next, we have to create the basic ter-
minalloop. This is what it looks like.

T LOOP:MOVDX,3FDH
INAL,DX;GETTHERXPORTSTATUS
TESTAL,l;ISBITSETFORBITEWAIT
ING?
JZT KEY;IFNOT,CHECKTHE
KEYBOARD

MOVDX,3F8H
INAL,DX;IFSO,GETTHEBITEFROM
PORT

ANDAL,7FH;MASKOFF ANY GAR
BAGE

MOVDL,AL
MOVAH,2
INT21H;PRINTTHECHARACTER

T KEY:MOV AH,l
0016H;ISTHEREAKEYW AITING?
JZT LOOP;IFNOT,CHECKTHEPORT
AGAIN

MOVAH,O
INT16H;IFSO,FETCHIT

MOVDX,3F8H
OUTDx,AL;SENDITOUT

JMPT LOOP;GOLOOPAGAIN-AND
AGAIN-

E& TT October 1989

This is a very simple terminal
program ... the list of features it lacks far
exceeds the ones it has. However, it will
allow you to check out a serial port. It's
pretty easy to understand what it's up to if
you read through the comments to the
right of the assembly language. We'll
have a proper look at what all the numbers
mean starting next month.

You might have noticed that there's
no obvious way to get out of this program.
A proper terminal would probably provide
an escape clause. In this case, being a test
program, you can just hit control break to
abort the look. It'sinelegant, to be sure.

By the way, if you've been following
the C language serial which has also been
in this magazine over the past few months,
you might be interested in seeing how this
would be done in C. The following C
program would result in much the same
actual executing code when it was com
piled. If you're into C, you might find this
aloteasiertokeyin than theassemblylan
guage routines above.

/*setbaudrate*/
outport(Ox3tb,Ox80);
outport(Ox3f8,0x80);
outport(Ox3t9,1);
outport(Ox3tb,Oxla);

/*terminalloop*/
do{
if(inport(Ox3fd) &OxOl)
putch(inport(Ox3f'8));

if(kbhit0)
outport(Ox3f8,getch0);

}whlle(l);

Once again, we're counting on being

CISCILLAT[]R
OUT

able to getoutofthe loop by hitting control
break.

Next month we'll be looking at writ
ing some actual drivers to make our serial
port do its stuff elegantly andatreasonable
speeds. •

SVI
99 Scarsdale Road, Don Mills,

Ontario, M3B 2R4 (416) 44~2340
Monday to Friday 8:00 to 4:30
(Minutes from 401 and DVP)

11

