
f f A T U A f

This month we'll carry on with the interfacing of the 8250 chip,
seeing how to give it interrupt capabilities, among other things.

I n the last installment of this series, we
started to examine the circuitry which

interfaces the popular 8250 serial port chip
to a PCs peripheral bus. As we've seen
before, the first step in any interfacing
project for the PC is to decode the 1/0 ad
dresses. With this safely behind us, we can
have a look at some of the additional glue
that's required to make the chip run.

In looking at a schematic of a com
pleted serial port for the PC ... we're still
not there this month, although we're get
ting closer ... it may seem that there are just
wires evel)Where, and that very little of the
circuitry makes any obvious sense. One
imagines that the whole thing really
evolved out of the chip manufacturer's ap
plication notes. In fact, this is not the
case... the 8250 predates the first PCs,
and, unless the notes have changed
recently, they don't mention anything
about associating the 8250 with an 8086
series processor.

~ust as it's possible to design the 8250
interface, as we're doing, wholly from a
functional understanding of the chip and
the bus it's to be interfaced to, so too can
you read the competed schematic in the
same way. The easiest way to understand
anything with a large scale integration
device in it is to understand the device and
work your way backwards.

The 8250's support circuitry makes
fairly decent sense if you stand in the mid
dle and look outwards.

E&TT September 1989

STEVE RIMMER

Address Unknown
As oflast month, our 8250 design will know
when it is being addressed by the lower po
tion of the address bus. It does not know
when the address is valid, however, nor
does it know whether it's intended to read,
write or shut up when it sees one of its ad
dresses. To solve these problems, more cir
cuitry is required

You probably could have guessed that.
The first problem is to make our card

distinguish between, for example, this
operation:

MOVDX,03F8H
OUTD:x,AL

and this operation:

MOVDX,03F8H
MOV[DX],AL

In the fust case, data will be sent to
the port 03F8H, which is, in fact, one of
the ports our card is decoding. If this hap
pens, we want our card to sit up and do
something about the goings on of the bus.
In the second case, data is simply being
written to location 03F8H of the current
memory segment, which has nothing to do
with serial port 1/0.

In both cases, however, the address
03F8H will appear on the lower portion of
the address bus.

The way the processor differentiates

between these two operations at the
hardware level is through the use of its
control lines. In the first case, it would pull
the lOW line. In the second, it would pull
the MEMW line. By watching the former
line, our card can decide whether it should
be doing something with the number on
the address bus.
____Ihe 8250 is capable of watching the
lOW line directly. Obviously, when the
processor wants to send data to a
peripheral device ... pulling lOW ... the
8250 should read the data. To this end, it
provides two read enable lines. DISTR
and .D.ISIR. We'll be using DISTR, and
tying DISTR to ground The two polarities
of this function exist in the 8250 because it
was designed a a generic serial port chip.
Other processors might need a line going
the other way. and they could use DISTR
rather than DISTR and an inverter.

Likewise, the processor will pull lOR
when it expects data to come from the
8250. In this case, we will use the write
enable line of the chip, DOSTR. This, too,
also comes in a reverse polarity version,
DOSTR, which we'll tie low. DOSTR
connects directly to the lOR line of the
PCsbus.

Interruptus Once Again
We won't get into the programming of the
interrupt capabilities of the 8250 for
several months, but we have to wire the
beast up now. Its powerful capabilities for

39

PC Hardware Interfacing, Part9

generating interrupts as a result of serial
conditions is one of the things that makes
the 8250 such a useful chunk of silicon.

The biggest problem with asynch
ronous serial data is that you never really
know when it's going to show up. The chip
itself can only buffer a single character at a
time ... not much of a buffer, really ... which
means that if you don't read the current
byte out before the next one arrives, you can
kiss it farewell, as it'll get overwritten.

The easiest way around this is to
check to see if the input: buffer of the 8250
is full at least as often as characters can ar
rive, allowing for the maximum speed of
data transmission at whatever baud rate
you're using. This has a number of draw
backs, not the least of which being that at
high baud rates most of the processor's
time will be taken up "polling" for data

If you write a simple terminal
program using polled communication with
the 8250 and the BIOS to write to the
screen, a straight XT will lose data at
speeds above twelve hundred baud

The other approach, as we've dis
cussed in previous articles, is to use an in
terrupt driven strategy. In this case, the
8250 is programmed to pull its INTRPT
line every time a character appears at its
input buffer. This line causes one of the
eight hardware interrupt lines of the PC's
peripheral bus to be pulled, which causes
the equivalent of a software interrupt to
happen within the PC.

Assuming that the owner of the card
has had the sense to install a suitable inter
rupt handler of some sort prior to
programming the card to throw interrupts,
the processor will leap to a routine to fetch
the character from the 8250 and store it
somewhere ... presumably in a more capa-
cious buffer ... for later processing.

This approach means that the proces
sor only has to devote as much time to ac
tually processing the incoming serial data as
there is data to warrant it... plus a bit of
overhead for the interrupt handler code. It
also means that whatever else is happening
in the foreground of the computer can go
about its life without really knowing that the
serial port is busy. We'll look at the actual
software architecture of this a bit later on.

The 8250 can generate interrupts for
several reasons, and it has an internal
register which an interrupt handler routine
can look at to determine which purpose a
given interrupt is intended to serve. Inter
rupts can be thrown by the 8250 because
of a waiting incoming character, as we've
seen, because of one of several error con
ditions or because the chip is free to send
40

...,_ --.... _ -IWT--------1 WI

Figure 1. Adding the Input/Output write detection lines and the IRQ hardware to the 8250

a character, that is, because its output
buffer is empty. This latter function may
seem a bit obtuse. It's actually very useful
in writing programs which communicate
wholly in the background, as the chip itself
can determine the maximum data transfer
rate. The only software that's involved is
an elaborate interrupt handler.

There are two criteria to consider in
interfacing the INTRPT line of the 8250 to
the PC's bus. The first is that it would be a
good idea if it actually worked, and the
second is that it would be a uniquely bad
idea if it worked when it wasn't supposed
to. This latter problem exists if the 8250
happens to throw an interrupt when it no
handler has been installed for one ... such
as when the machine is powering up, or
when the 8250 hasn't been initialized or re
initialized after an application has quit.

It is highly desirable to "gate" the in
terrupts that the 8250 throws.

One of the other neat features of the
8250 is its provision for having two indepen
dent output lines sprouting out of it. These
lines simply reflect the status of two bits of
an internal register of the chip. I suspect
that they were included by the designers of
the thing so that software driving the chip
could dial phone numbers on old style, non
intelligent modems... with suitable timing
code, you could pulse the phone line with a
couple of transistors and fool the phone
company into thinking your modem was ac
tually a funky old rotary dial phone.

In our case, we're going to use one of
these to drive a gate, such that only when

the OUTI line is dehberately pulled will
interrupts generated by the 8250 be al
lowed to make it through to the bus.

On a standard serial port card, the
other line, OUTl, is tied high and never
used However, it has all sorts of pos
sibilities, and you might want to experi
ment with it later on. As a really simple ex
ercise, try hanging a transistor and an
LED off it and writing a program to make
the LED flash. Actually, this can be quite
useful, and when we actually write a driver
for our card you can set the LED up to
flash when data comes in, making the card
a bit easier to debug.

There are two hardware interrupt
lines on the PC which are dedicated to
serial communications. These are IRQ 3
and IRQ 4. The primary port range, start
ing at 03F8H, corresponds to IRQ 4.
When a hardware interrupt fmds its way to
IRQ 4, the equivalent of an INT OCH in
struction happens inside the PC. The
secondary serial port range, starting at
02F8H and using IRQ 3 generates an INT
OBH instruction.

Harda'Port
We have now worked our card up to the
point of its being able to talk to the PC
reasonably well. We could program it and
have it behave just like a real serial port ...
with one notable exception. It can't actual
ly talk to the outside world, being as yet un
equipped with an interface to a real RS-
232C connector. We'll be having a peer at
some of that hardware next month. •

E&TT September 1989

