
f f A T U R f

This month we're going to look at a paper design problem
involving the 8250 serial port chip we looked at last month.

Rather than simply seeing how it works,
we're going to see how it can be made to work.

A whole book full of circuits isn't near
ly as good as knowing how to design

something. Looking at circuits which other
people have gotten together will show you
how the hardware in question operates ...
assuming you can read schematics and
know what all the chips do ... but it won't
really teach you how to take a pile of loose
chips, some specification sheets and a
prototype board and make a working cir
cuit out of them.

This is especially true when one is
looking at hardware design for computers.
Much of the confusion in this area stems
from the observation that no two chip
manufacturers use the same nomenclature
for anything and, in fact, it is not at all un
common for two chips from the same
manufacturer to be described in different
terms. As such, the "cookbook" electronics
of computers really isn't... you can't just as
semble the appropriate building blocks and
go rock 'n roll. Rather, you must really un
derstand the functionality of all the parts.

The upside of this is that, assuming
you do get your head around what all the
lines and signals are for, you can create
paper designs that usually work. Most of
the computer hardware I've prototyped
has done what it was supposed to do as

22

ST[V[RIMM[R
soon as it was powered up, barring a few
solder bridges and bad parts. This is not
because I'm unusually good at this stuff
but, rather, because computer hardware
design is really an exercise in logic. You
can't just wire together black boxes and
hope it'll all work, but you can wire
together functional elements once you un
derstand their functions.

Out of this obtuse bit of electronic
zen, let's get down to a design problem of
a manageable level of hugeness. We're
going to design an interface between the
8250 serial port chip we looked at last
month and the PC's peripheral bus. Now,
this is a good design project because it's
not very hard, happens to proceed logical
ly without any mysterious secrets and ...
perhaps most important for this sort of il
lustration... has already been done. Once
we have worked through the logic of the
process we can peek into the IBM techni
cal reference manual to see if our design
will really work.

Ride That Bus
This month, let's see how the basic inter
facing of the chip to the address and data
buses takes place. This is a variation of the
I/0 decoder stuff we've looked at to date.

Please note that this month's schematics
are not complete ... don't attempt to build
anythingjustyet.

The 8250 requires a range of eight
ports. By convention, the serial ports on a
PC live in the ranges of 3F8H to 3FFH for
the primary port and 2F8H to 2FFH for the
secondary port. We're going to be designing
a primary port here ... for one thing because
the decoding is so gloriously easy.

We know that we will have to select
among the eight ports of the chip, even if we
don't know what they actually do. As such,
we will leave the three lowest order address
lines out of the decoding problem. These
can be connected directly to the AO through
A2 address lines of the bus, as, when our
decoder says that the port address of the
8250 is being accessed by the processor,
these lines will contain the port address of
the actual internal register to be dealt with.
Ignore this stuff for the moment.

The port range will be addressed by
the processor's address lines A3 through
AS, for a total of six lines. Because our
port sits at the top of the PC's port range,
if all these lines are high... and several
other signals are as they should be, as you
may recall from previous installments in
this series ... the PC is obviously trying to

E& TT August 1989

•IN--
QNO __

+11!V __

-11!V __

ABET-- MR

oo __ 00
0(__ 01
CQ __ CQ
oo __ 00
04 __ 04
oo __ DO

CG-- ca
rn __ 07

irJR __ DISTR
i[JN __ <Om!
N) __ lliS1"'r
AI __ l(JErnl
f,Sl __ N:l
>3 __ AI
M __ Nl
J>4 __ CS1

All-- CSD
A7 __ Ci!l! ... __
IIQ __ XTAL1

AEN

F(;lK

tlliktot~rangeofpor~.
We can simply run all of the little

devils into a big NAND gate. H the output
of the gate goes low, our 8250 is being ad
dressed. This is, to be sure, 1/0 decoding
with no pain at all.

The 8250 provides three chip select
lines. We'll tie CSO and CSl high, as
they're not going to be used Remember,
the NAND gate will go low when our chip
is being addressed, so we want a select line
that will be active when the voltage on it
drops. In other words, we want~ the
inverse chip select.

When the 8250 is selected, it ·will
communicate with the data bus, reading
and writing data as is appropriate. When it
is not selected, it appears as if it doesn't
exist as far as the processor is concerned

In fact, convention dictates that the
data bus of the PC be separated from that
of the 8250 by a 74LS245 bidirectional buff
er. As such, we have not tied the 8250's data
lines right to those of the PC, but have
splashed one of these glue chips in between.
We'll see more about this next month.

If the PC wanted to access port 3F8H
of the 8250 ... that's the serial data input
register, as it happens ... it would put the
number 3F8H on its data bus and jiggle
the right lines for a port access. We can
look at this as follows

Hex address 3F8
Binary address 001111111000
It's easy to see here why our simple

E& TT August 1989

[JJTi

lJlTI

1HTIW'T

11'18

DTR

8IN Figtue 1. The chip
and the bus, all

iWliliJJf ready for inteifacing

1/0 decoding works so well. The three
zeros under the eight represent the three
lowest order address lines, the ones which
actually select our port. The six ones under
the three and the F are the six lines which
must go high if our port range is to be
selected The two zeros under the three
are ignored lines.

---QNO __

+11!'1 __

-11!'1 __

ASET MR

00 00
D1 D1

CQ CQ

118 00

04 04

DO DO

ca ca
rn 07

'Of __ Dl61ll
lJN __ rOITR

AD lliS'I'Ir
A1 lU!TII
Nl N)

>3 A1

M Nl

A5 CS1

1>4 cro
A7 CSI!
NJ

All XTAL1

AEN

IQx

If we wanted to make our card a
secondary serial port, down at 2F8H, we
would do so by changing one line. If this is
the decoding for the secondary port range,

Hex address 2F8
Binary address 001011111000
it's clear that all we have to do to

modify our 1/0 decoding for this range is
to put an inverter between data line eight
of the PC's bus and the big NAND gate.
In a real world design, we could make this
feature jumper selectable.

There are a few other lines to con
sider in this basic level of decoding, but
we'll leave them until next month.

Byte Sized Chunks
In theory, the 1/0 decoding of the 8250
should work very much like that of the
basic PC card we've looked at in this series.
In practice, there are a few spaniels in the
works. The port range is different, for one
thing, although this has turned out to ac
tually make the 1/0 decoding a bit easier.
The more important aspect of this real
world application is that it's no longer ob
vious which lines of the thing we'll be inter
facing to connect to the lines of the PC's
peripheral bus. Even in the little bit of in
terfacing we've seen here, it has been
necessary to understand a bit of what is
going on in the workings of the 8250.

Next month we'll finish off the basic
address and data bus interface and touch
on some of the really odd bits of the 8250. •

om
llii'i

INTRPf

11'18

mil

!()IT

Figure 2 Adding
BIN some basic l/0

decoding and a few
~ other lines.

23

