
f f A T U A f

I the PC
This month we'll start looking at real world solutions to PC

interfacing problems. Let us transcend the world of discrete chips
· and move on up to large scale integration.

U ntil now we've been looking at inter
facing solutions based on large

numbers of fairly simple devices. It is, of
course, possible to build virtually anything
with nothing more than ten or twenty
pounds of I..S logic and a printed circuit
board the size of Alberta. Such a device
would not be elegant but, to be sure, it
would be a lot easier to understand than a
whole computer on three chips.

The circuitry we've looked at to date
has had the advantage of being easy to un
derstand It hasn't been terribly practical,
not because it wouldn't have worked, but
because it would have been excessively
tedious to have implemented It had a lot
of parts for relatively little functionality.

All the chips involved in our interface
card to date went to support but a single
port. As we saw early on, most interface
applications require at least two. In addi
tion, our port lacked any hint of software
programmability. It was exceedingly in
flexible. To have added this sort of feature,
however, would have sucked back quite a
few more chips.

Unless you're right out there with
your toes curled over the leading edge and
your face staring into the void, you'll
probably find that your interface project
has, to some extent, been done before. In
fact, most applications for PC peripheral
cards have been done so many times
before that there are now complex chips
available to handle the works. These sorts
of chips typically do everything that a herd
of small scale devices will handle, but they
do it faster, with less power consumption,
more reliably and cheaper.

The only drawback, of course, is that
one can have no idea as to lww they do it.
They are, quite literally, black boxes.
However, in the real world no one really
cares how it works so long as you can't get
sued for it.

In designing practical PC interface
cards, getting the "package count" ... the
number of chips ... down is really quite im-
40

ST[V[RIMM[R
portant. It's usually a lot more desirable to
use one big expensive chip than lots of lit
tle cheap ones, as the labour costs involved
in placing all the little chips ... or the time
involved on a pick and place machine if
the card is to be assembled automatically ...
along with the greater potential for error
or bad parts usually far outweighs any
potential saving in the cost of the chips
themselves.

Ports of Call
As we've been looking at building a paral
lel interface card for the PC with discrete
parts, it seems reasonable to start looking
at a large scale device which will do the
same thing. In this installment we're going
to get introduced to the Intel8255, which is
a rather huge chip that manages three
bidirectional 1/0 ports, each of which is
programmable eight ways to Sunday.
Designed by the same company that does
the processor which drives a PC, it uses
somewhat similar interfacing techniques
and most of the same names for things as
does the 8088.

Interfacing an 8255 to a PC is quite a
lot simpler than having the PC talk to our
handful of chips last month. However, for
the moment, let's concentrate on the beast
itself.

The 8255 is a general parallel port
chip designed to be used with a port
driven microprocessor. As we've seen in
the past few months, when the processor
wants to talk to a port, it puts the port ad
dress on the lower part of the address bus
and the data on the data bus, and it then
pulls the lOW line. In the case of the 8255,
the port chip maps onto several consecu
tive ports, as we will require a range of
ports to be able to properly control it.

There are twenty four input/output
lines squirting out of the 8255. These can
be regarded as being three eight bit ports
and, for reasons which will be obvious
shortly, this is really how the chip deals
with them. However, they can also be

programmed into other combinations. For
example, we can treat them as two twelve
bit ports. We'll get into this momentarily.

We're going to pretend that we've al
ready gotten past all the technical details
of interfacing the 8255 to our PC for just a
moment so we can look at the characteris
tics of the chip itself. While this may seem
like an awkward order in which to handle
the task, it's usually how things are done
with large scale devices like this one. It's
important to understand how the 8255 be
haves from the point · of view of the
software which will drive it so that we can
understand how best to handle its
hardware.

In this case, we're going to have our
hypothetical 8255 decoded so that its
range of ports starts at 0300H ... when we
get to the actual interfacing circuitry you'll
notice that some of our previous card will
have made the transition into this new in
carnation.

Interfaced like this, the 8255 will ap
pear as four consecutive ports to the
processor. In machine language terms, we
would defme these as

PORT AEQU300H
PORT=BEQU301H
PORT_ CEQU302H
CONTROLEQU303H

This is very much less mysterious than
it seems at first.

In its simplest mode, every input/out
put line of the 8255 can be set up in one of
two states, to with, as input or output.
Now, the chip doesn't actually allow us to
individually set the state of every line, but,
rather, implements a number of
reasonable permutations. The actual con
figuration of the twenty four lines is deter
mined by the setting of a mode byte. This
byte, not surprisingly, is sent to the chip
through the control port, that is port 303H
in this case.

In order to use the 8255, we must set

E& TT June 1989

the mode byte to tell the chip which of its
ports are going to be input ports and
which will be output ports. We can then
deal with the ports directly by reading
from and writing to the three data ports
from 300H to 3021-1. For example, if the
first port of the chip were to be defmed as
an output port, we would subsequently
write to it by saying

MOVDx,300
MOVAL,45
OUTDx,AL

The number 45 is the data being writ
ten to the port.

Initialization
Initializing the 8255 is fairly complex.

However, it's the only complex thing about
the chip. Once you've initialized it, com
municating with it couldn't be simpler.

The 8255 can be set up to work in
three modes. These ~e

Mode OBasic single directional ports
Mode Jlnterrupt driven mode
Mode 2Bi-directional mode

We're going to look at mode zero
right at the moment. The other two modes
are powerful, and will prove useful later on
when we're developing interrupt driven
strategies for the card. However, for the
moment, let's just make the beast talk.

The mode we choose is communi
cated to the 8255 through a mode byte,
which, just for the sake of perversity the
chip's documentation likes to think of as a
"mode word". As with most of the well
bred bytes, this one is made up of eight
bits, and every bit has a meaning all of its
own. Here they are

Bit OPort C lower : 1 =input, 0 = output
Bit lPort B : 1 =input, 0 = output
Bit 2Mode select : 0 =mode 0, 1 =mode 1
Bit 3Port C upper : 1 =input, 0 =output

Bit 4Port A : 1 =input, 0 =output
Bit 5Mode select
Bit 6Mode select : 00 = mode 0, 01 = mode
1, 10=mode2
Bit 7Mode set flag: 1 =set mode

This actually defmes the functions of
the chip very elegantly if you stare at it for
a while. The 8255 behaves like two
separate devices, or, at least, it can if you
ask it to. Obviously, if you program both
devices with the same mode information it
behaves like one device. The first device

E&TTJune1989

consists of port A and the upper four bits
of port C. The second device, logically
enough, consists of port B and the rest of
port C.

This distinction allows us to program
each device with a separate mode if we
want to. This is useful because the inter
rupt mechanism of the chip uses port C to
actually do the interrupting.

In our examples here we'll be
programming the 8255 so that both of its
sections will be running in mode zero. As
such, it will behave like a single device, and
we can ignore its schizophrenia.

In order to set the mode of the chip,
then, we must assemble the control byte
out of the appropriate bits to program the
8255 for the functions we want. Let's walk
through a simple example. In this case we
want port A to be an input port and ports
B and C to be output ports.

First off: bit seven must be one, as this
is a flag to tell the 8255 that the data being
sent to its control port is to be regarded as
being a mode change. Thus, we start with
80H.

Next, let's set the mode for port A
and the upper part of port C. We want this
to be mode zero, the simple 1/0 mode.
This means that bits fwe and six must both
be zero. Our mode control byte is still
80H.

Port A is to be an input port. To do
this, bit four must be one. We thus OR
80H and 10H. .. 10H being what you get if
the fourth bit of a byte is set. The result is
90H.

Port C is to be an output port. We
can set the upper hap of it so by making bit
three zero. We're still at 90H.

The mode for port B and the lower
half of port C is zero, so bit two will be
zero. Port B is an output port, so bit one
will be zero. The lower half of port C is an
output port too, so bit zero will be zero.

Our mode control byte is 90H.
Having worked this out, we can set

our chip up with the following bit of code

MOVDX,CONTROL
MOVAL,90H
OUTDX,AL

If we now do this

MOVDX,PORT _ B
MOVAL,55H
OUTDX,AL

every other line of port B will go high.
The number 55H is a particularly useful
one for these kinds of tests, as it has all its

odd numbered bits high and all its even
numbered bits low. It's unlikely to occur as
a garbage byte, and so it's a useful check to
see if something like this is working.

Calculating the mode bytes for 8255
initialization is a genuine pain. To this end,
the following bit of assembly language is
really helpful. Aside from being easier to
use, it keeps you from making mistakes.
This is worth the effort, as having the 8255
incorrectly initialized can make it do the
weirdest things.

PORTC _ MODEEQU00001001B
PORTB MODEEQU00000010B
PORTA-:::_MODEEQU00010000B
8255 _ MODEEQU01100100B

MOVAL,80H
ORAL,8255 _MODE
ORAL,PORTA _MODE
ORAL,PORTB _MODE
ORAL,PORTC MODE
MOVDX,CONTROL
OUTDX,AL

I've set the significant bits of each of
the four equates to one so you can see
where they are. In this case, we've set all
the ports to output and the chip into mode
two for both devices. The mode control
byte would be OFFH. In practice, you'll
probably want to change this.

Actually, in practice you'll probably
let the compiler OR the four bytes
together, rather than · doing it in assembly
language, that is

MODE BYTEEQU8255 MODE OR
PORTA-MODE OR PORTB MODE

- -
OR PORTC MODE
MOVDX,CONTROL
MOV AL,MODE BYTE
OUTDX,AL -

The first line has wrapped here ... it all
has to go on one line in an assembler
program.

Post Initialization
The 8255 is quite an old chip, predating the
8088 that the earliest PC's were based on.
Its documentation speaks of its being used
to control things like the hammer relays of
a teletype. However, it's a good chip to use
for this sort of application. It's cheap, fast
and pretty easy to get up and running.

As we'll say later on, it's also incredib
ly fleXIble... possibly more so than one
might ever require. •

41

