
f [A l U R [

Part Three, in which the art of discoursing with hardware
is briefly touched upon.

e're a bit short of space this
month. All right, then, we're
exceedingly short of space
this month. Circumstances
have dictated that I have a
page or so for the hardware
thing. Since any useful cir-
cuitry would take quite a bit

more than this, we're going to look at a
non-hardware part of hardware design for
the PC. This time around, we're going to
touch briefly on the software which talks to
the boards we're going to be designing in
the months to come.

It was going to get down to this
sooner or later. The cleverest cards in the
world are useless without software to drive
them.

Any Old Port
As we've noted in the past two episodes of
this saga, it's usually the case that one com
municates with a peripheral card in the PC
using ports. This isn't always the case. If we
want to move a lot of data around, we
might allow the card to read or write
directly from or to the system's memory.
This is called, not surprisingly, "direct
memory access", or DMA. It's a complex
subject on the PC, because the processor
doesn't particularly like it. We won't be
dealing with it here.

For the most part, though, we'll be

58

ST[V[RIMM[R
using ports.

You can read the data from any of
the PC's ports in machine language with a
few simple instructions. For example,

MOVAL,20H

will read the information from port
20H. This port happens to be part of the
interrupt controller on a stock PC, but this
is irrelevant to our discussion here. Having
executed the above instruction, the AL
register contains authentic read-in data.
Whether or not it's of any use remains to
be seen.

You can read a port at any time, but,
depending upon the design of the card
which is driving the port, the data may or
may not be good when you read it. As
such, it's usually the case that the card
must be able to indicate when it has good
data. The simplest way for it to do this to
use a flag. This usually means that it needs
a minimum of two ports.

Let's say that our card uses its base
port address as its data port and the first
bit of the next port along as its status flag.
When this bit is high, the data at the data
port is valid. Here's some code to wait for
good data and read it. We'll say that the
base port is 300H.

PORTEQU300H

PORTLP:INAL,PORT + 1
TESTAL,Ol
JZPORTLP
INAL,PORT

This would not be a terribly clever bit
of code to actually use. If no data ever ap
pears at PORT, your computer would
lock up. However, it illustrates the prin
cipal of how to wait for a byte of valid data.
In practice, we would probably have the
program wait for a specific time and then
exit the loop, or, more sensibly still, we'd
have it test PORT+ 1 every so often,
doing other things in the mean time.

The technique of checking for valid
data like this is called "polling". It's not the
most desirable way to read incoming data
most of the time. It assumes that the com
puter will always be free to poll the status
of whatever is sending it the data at least as
frequently as the data appears. If the
machine goes off and is unavailable to poll
the status port for long enough, a second
byte of data might appear at the port,
destroying the first one before it could be
read.

Besides which, polling for data like
this wastes the machine's time. By rights, it
should be able to ignore our peripheral
cw-d until some data actually shows up.

There is, of course, a better way. •

E&TT March 1989

PC Hardware Interfacing

Interruptus
The proper way to handle this situation is
to make the card send interrupts when it
has data to give the PC, and to make the
code which reads the card "interrupt
driven". The only drawback to this is that
there are very few available hardware in
terrupts available in a PC. .. most of them,
as we touched on last month, are already
spoken for.

onto the stack and leap to wherever the
vector for this interrupt tells it to go.

as we know that our card would only have
thrown the interrupt if there was good
data there. The handler would normally
put the data somewhere so that it could be
accessed by another program in a more
conventional manner.

Hopefully, the program which we've
written to drive our card will have had the
sense to point this vector to a suitable bit
of code. The code which deals with a
hardware interrupt is called a "handler". The next two lines of code signal that

the interrupt is complete. Finally, we
return from the interrupt with an JRET in
struction, which will put us right back
where we started before the interrupt took
place. So long as we have preserved every
thing properly, the interrupted program
will never know that anything happened.

This is a simple interrupt handler.

HANDLERPUSHAX
INAL,PORT We're going to use interrupt two

here. It's not usually dedicated to anything.
In complex applications, it's possible to
avail the PC of extra hardware interrupts
by daisy chaining it's internal 8259 inter
rupt controller chip to a second controller.
We're not going to pry open this particular
can of worms today, however.

;DO SOMETHING WITH THE DATA

MOVAL,20H And Then We Were Three
There's a lot more to it than this, of course.
Next month we're going to get back into
the seething world of hardware design, but
we'll be doing so with some of the things
we've looked at here in mind. It's impor
tant to understand the relationship be
tween hardware and the software which
will drive it if one's peripheral cards are not
to become the doorstops and hamsters'
grave stones of generations yet unborn. •

OUT20H,AL
POP AX
IRET In this example, let's say that our

peripheral card is so designed that, rather
than raising the first bit of PORT+ 1 to in
dicate the availability of data, it raises in
terrupt line two of the PC's bus. When this
happens, the PC will immediately stop
what it's up to, push its current code seg
ment, instruction pointer and flag register

An interrupt handler must always
save all the registers it might corrupt onto
the stack before it does anything and then
restore them when it's done. In this case,
only the AX register gets bopped. We can
inhale the data from PORT with impunity,

METERS FOR EVERY JOB!
VALUE PRICED

MODEL GDM-8035
DIGITAL BENCH
MULTIMETER
Six functions including AC/DC
voltage, AC/DC current , resis·
tance and diode test, 20A high
current range and 1200V high
voltage range, accuracy 0 .1 %.
Circuit protected , seven segment
LED display.

$325. Plus $10 tor shipping1~&~h~an~dl~in~g .••••••• .J

60

HC·5050E

MODEL HC-4510
4·1/2 DIGIT ACCURACY
200mV to 750V AC, 200mV to 1000V
DC and 2mA to 1 OA AC/DC currents
plus resistance 20 ohm to 20M ohm.
Overload protected, 9V battery
included.

$134.50
Carrying case: add $10.00.
Plus $5 tor shipping & handling.

HC·5050E
DELUXE ANALOG
MULTI METER
14 DC volt ranges to 1200V and
13 AC ranges to 3300V plus AC/DC
currents, DC resistance and dB.
Accuracy 2.5% DC and 3.5%
AC. Complete with carrying case.

$59.95
Plus $5 for shipping & handling.
GSA approved where applicable.

Order by phone or mail. Credit card, money order, cert. cheque or
C.O.D. Ontario residents add 8% P.S. T.

KB ELECTRONICS
355 Iroquois Shore Road, Oakville, Ontario L6H 1M3
Tel: (416) 842-6888 • Telex: 06-982396 KBELOKVL

Circle No. 17 on Reader Service Card

Advertiser's
Index

Duncan Instruments Canada Ltd. 62

Electronic Book Oub .. 7

EMJ Data Systems ... 64

Information Unlimited 46

KB Electronics ... 6,60

Kaientai Electronics ... 40

McGraw IIill.. 5

National Technical Schools 17

Orion Electronics .. 59

Toshiba of Canada... 2

For Advertising
Information

Call (416) 44!H;600
Fax: 416-445-8149

E&TT March 1989

