
f [A T U R [

Part 2
Plumbing the further mysteries of 1/0 address decoding,

it turns out that the world is really controlled by jumper settings.

n the first installment of this series, we
had a look at the basic port addressing
scheme of the 8008 microprocessor that
drives the IBM PC and all its lineal -
and oftentimes illegitimate - descen
dants. If you're still a bit dazed by it all,
the contents of this article probably won't
help you very much. We're going to dig a

bit further into the whole writhing mess.
Regrettably, without a workable 1/0

decoding system fluttering about your
head, all that comes later will be grass in
the wind.

The basic 1/0 decoding circuitry that
we checked out last month was workable,
but only in the most rudimentary sense. In
common with North American television
and most Tory politicians, it ignored the
real world to the best of its abilities.
Plugged into just about any PC, it would
probably have found itself instantly at odds
with something.

This month, we're going to make it a
bit more likeable - something that's rela
tively easy to do for a card, as it turns out.
All it takes is a soldering iron. This is more
that you can say for a Tory politician ... al
though there are certainly those who
would be willing to try the same approach
on one just to see what happens.

Rabbits and Other Jumpers
If you flip back to the last episode in this
drama, you'll recall that we devised an 1/0
decoder which would raise a line if any
port in the range of 300H through 31FH
were to be addressed by the processor.

E&TT February 1989

SHVf RIMMfR
The only serious sweat about this is that it
was fixed in this range, and no power in
the known universe was likely to talk it out
of its little hole in the wall

In the original specification for the
IBM PC, this range of port addresses was
reserved.Jor designing prototype cards.
However, it should be realized that the
people who designed this system were
genuinely a bit short sighted. They figured
that 64 kilobytes of memory, for example,
would do for most souls, with 128 kilobytes
for the greedy ones. As such, the original
port address allocations of the system have
become a bit blurred over time as desig
ners realized that most of what they
wanted to do with the system hadn't been
allowed for.

Some of the original port addresses of
the IBM PC have remained, of course.
Things like disk drives exist in all
machines, and, as such, their ports are in
variably spoken for. Other devices, like
hard drives, are sufficiently common that
one would not want to design a card which
infringed on their real estate. Of the
remaining port ranges, it's largely impos
sible to realistically carve out any specific
range of addresses for a custom peripheral
card and blindly assume that it won't al
ready be in use by some other card.

This all being the case, it's pretty well
essential that in designing cards for the PC ·
one make the port address range .a bit
flexible, such that the person using the
card can fmd a free space in the port al
location of her or her particular system

and plug in our card. This, of course, is
why there are so many jumpers and DIP
switches on cards. Ours will be no excep
tion, of course.

To get started with all this, let's have a
look at the "official" port allocation
strategy of the PC.

00)-0QFDMA chip
020-021lnterrupt controller
040-043 Timer chip
060-063 Parallel port chip
080-083 DMA controller
OAO-OAFNMI mask
OCO-OCFReserved
OEO-OEFReserved
100-1FF Not for rent
200-20FJoystick port
210-217 Expansion box
220-24F Reserved
278-27F Reserved
2FD-2F7Reserved
2F8-2FFCOM2 serial port
300-31FPrototype card
320-32FHard drive
378-37FPrinter
380-38CSDLC communications
3A0-3A9Binary synchronous com-

munications
3B0-3BFMonochrome card
3C0-3CFReserved
3D0-3DFColour card
3EO-3F7F1oppy controller
3F8-3FFCOM1 serial port

In the official IBM view of the
universe, port addresses above 3FFH can't

9

Interfacing the PC, Part 2

nsw ~mprDLJSd ~/0 di[;Dder ... riDW wm1 ttls
m~rilds ~rlgred~&mt PortSw~t[;tJ

DATA 0
DATA I
DATA 2
DATA 3
ORTA 4
DATA :5
DATA 6
DATA 7

lOR
IOU

ADOR 0
ADOR I
ADOR 2

ADDR3
AOOR4
AODR:l
ADOR6
RDDR7
RODAS
RDDRO

AEN

74LS24:5

DATA
TO
REST
OF
CARD

"':>0·----'-- SELECT

74LS02 74LS04 J
This line Indicates
lhat one of our 1/0
ports is being
addressed

Figure one: The: address deCoder wi lh II'IOdi ficaliOt'ls to aiiCMU for jUllper
se I ec: tab I a oddresses.

be decoded because only address lines
zero through nine are supposed to matter
to the system when it's doing port I/0. In
fact, as we've seen, one could build
hardware to handle these extra addresses,
although there are several good reasons
why not to. The most notable of these is
that most real ffiM hardware ... and clones
thereof ... do not look, for example, at ad
dress line ten. As such, if one attempts to
address port 0400H, having designed a
card which can decode this address, it will
look like port 0200H to all the other cards
in the system, that is, the ones which ig
nore line ten.

The low order port addresses, the
ones below 200H, are better off left alone
unless you specifically want to design a
card that creates hardware interrupts. We
will do this - but not just now. As such,
the area we have to consider in creating

10

this card is the one which ranges from
200H through 3FFH.

There are a number of devices in this
list which may seem a bit unusual For ex
ample, you may not have encountered an
SDLC communications card. That's okay
- they were never a real driving force in
the PC universe. Likewise, if you were
designing a local area network card, for
example, you could probably assume that
the sorts of machines that it would come
to reside in would not have joystick ports
in them.

If this seems a little funky ... ya, well, it
is. This is why it's important to make the
port addressing of any cards we design for
general distribution user selectable to
some extent. It's impossible to know which
bits of the unspoken for real estate other
card designers will have snaffled, so you
have to let the heads who use your cards

decide for themselves.
You also have to find ways to explain

to said heads how to ascertain what ad
dresses are currently in use. Best of cosmic
luck in this. ·

Even if you're just hacking copper for
yourself, it's not a great deal of extra work
to get this together, and it can save you
some hassles later on, should you sub
sequently add more fiberglass to your sys
tem and find that some of it covets the ad
dress space you've set up for your home
made interfaces.

Joy Sticks
In order to decode the address space

from 300H through 31FH, as we got into
last month, we have to see that address
lines eight and nine are high and that lines
five through seven are low. The lines zero
through four constitute the low order part
of the address, and don't matter at this
stage of the decoding.

You can see the circuitry which does
this in the schematic we used last month,
or the one for this month, as nothing has
really changed in this respect. The 74LS04
at the bottom of the diagram takes care of
the lines five through seven. Lines eight
and nine go directly to the second 74LS21
and gate. Thus, if all of lines five through
seven are low and line nine is high, all of
the inputs to the first quad AND gate will
be high because of the 74LS04 inverters,
and the output of the gate will be high. If
line eight is high as well, all the inputs to
the second quad AND gate will be high
and its output will be high, indicating that
we have decoded an address in the range
we're interested in.

Clear as a Toronto sky in smog
season, I know.

Now, in order to shift the address
range around a little bit, let's consider
jumpering out one of the inverters that
connects the address lines five through
seven to the first quad AND gate. Let's ·
lose the one that handles line seven. This
line decides whether the address range in
que~tion starts at 300H or 380H. As things
are, 1t must be low for the address to fall in
the area we're up for decoding. However,
with the inverter removed, it would have to
go high. As such, with this inverter gone
our decoded address range for this card is
suddenly 380H through 39FH. '

Ahhah!
This is a particularly handy little port

address, as it's where the aforementioned
and seethingly mythical SDLC com
munications adapter is supposed to go. It's
prime hunting ground for custom cards.

E& TT February 1989

This can b• used t.o replace
the 74LS04 • s and the j un>pe~
b I ocks so t.hol DIP switches
con lie I ect the port. address. r

F~o• 74LS244---~--I b--To 74LS21

If we jumper the inverter in line six,
we can switch the range up to 340H
through 35FH, which the chart doesn't
have anything much to tell us about.

How about jumpering both of them,
you cry. Well, yes, this would give us ad
dress decoding in the range of 3COH
through 3DFH. The lower half of this
range is marked as being reserved,
whatever that means, and I'd certainly be
willing to trample on it. The upper half,
however, overlaps the port addresses for
the 6845 CRTC chip that makes the
colour card go. This is harmless if you
have a Hercules card in your computer,
but it could be a tad nasty otherwise.

Now, this range might be useful if we
were designing a card which really only
wanted to be able to use a maximum of
sixteen ports. This is actually a fairly
probably occurrence, in which case put
ting the base of the addresS range at 3COH
would be quite acceptable.

Jumpering out the three inverters on
the card does, of course, only allow us to
shift the addresses around in the range of
300H through 3EOH. It ignores the juicy
looking space down at 0200H, where the
aforementioned game controller and ex-
E& TT February 1989

NAND gate

pansion box port ranges dwell In order to
be able to address these areas, we'd have
to put a jumperable inverter between pin
seven of the 74LS244 that buffers the high
order address lines and the second quad
AND gate. This would allow us to switch
the base of the address range being
decoded between 300H and 200H.

In designing actual hardware to allow
for the selective jmnpering of these inverters,
we can set the whole ugly mess up with DIP
switches and NAND gates, the preferable
way, or \\e can use three pin header blocks,
such that jumper caps fit over two of the
three pins to decide how the connection is to
be made. I've used jumper blocks in the
schematic here to keep things reasonably
easy to understand, but you can see how the
NAND gate approach works, too.

It may seem that having a variable
port address system like this would make
writing the software that ultimately speaks
to the ports in our card a bit of a
nightmare. It doesn't. The 0088 allows for
floating port ranges very nicely. It should
be kept in mind that no matter where in
the absolute address range of the machine
the ports actually wind up, all the ports on
our card will bear the same relationship to

each other. For example, the 8250 serial
chip that drives the COM ports on a PC
has the following register port addresses
when it lives in the address range for the
primary serial port.

3F8HData buffer and LSB divisor
3F9Hinterrupt enable MSB divisor
3F AHinterrupt identification
3FBHLine control
3FCHModem control
3FDHLine status
3FEHModem status

Don't worry about what these actually
do. However, this is a pretty typical ex
ample of register use, and therefore port
use, in a peripheral card. More to the
point, if this serial port suddenly becomes
COM2, all the addresses shift downwards
to start at 2F8H instead of3F8H.

In software, we would address this
problem as follows. Rather than writing
code to access specific ports, we would
define a word variable like this

PORTBASEDW03F8H

and use it to deal with the ports. To
read the line status port of this card, for
example, we would

MOVDX,PORTBASE;GET THE
PORT BASE

ADDDX,OOOSH;ADD THE OF
FSET

IN~DX;GET THE BYTE

The number five that we add to the .
base port address is the difference be
tween the port base and the line status
register, that is, five locations. No matter
where the card turns up, this will remain
constant. As such, if we move the card we
need only adjust the value ofPORTBASE
accordingly.

Ports of Call
I think we've decoded the high order

part of the port address question into
groveling, helpless submission. It will .not
rise again. In the next part of this series,
we'll look at those five lines that we keep
saying don't actually matter. They do, in
fact, just not all that much.

By the end of the next part of this
engrossing narrative, you'll be able to nar
row things down to a single port. It makes
one stop and consider the incredible _
wonder of the universe in all its cosmic
order, I know .. .

'Til then ... •

11

