
f [A T U R [

Exploring the mysteries of designing PC
interface cards.

he mysteries of computer hardware
are like no mysteries you'll ever check
out on Masterpiece Theater. These
are nasty ones. A good bit of
hardware microcomputer design will
make you long for boat building.
This being the case, of course, design

ing microcomputer circuitry is one of the
most rewarding things you can turn your
soldering iron to. It's tricky and demand
ing, but when you fmally do get the thing
going it's a hell of a rush.

Designing interface cards for the
IBM PC is a slightly tamer subset of
microcomputer hardware design. Notice
that I said "slightly''. It has the advantage
that you don't actually have to design a
whole computer, and the disadvantage
that you have to work with an architecture
which was originally perpetrated by a
three foot two inch tall green skinned troll
from Mars who had it in for everything
bigger than he was ... this, of course, being
the creature which IBM actually
employed to design the original PC.
Betcha didn't know that.
44

SlfV[RIMMfR
It's not horribly difficult to design

boards to plug into a PC, although you do
need to know a few things first. Successful
hardware design for the system involves
both knowing where to put the chips and,
subsequently, knowing how to talk to them
from within the computer.

Over the next few months we're going
to see how to do both. You might also
want to check out the C language series
that's starting this month. The two will
kind of fuse together later on, inasmuch as
you'll need a programing language to
communicate with the cards you'll build.

In this first installment, we're going to
look at the evil secrets of 1/0 decoding.
Some people have described 1/0 decoding
on a PC as being more fun than sex - not
very many, though.

Any Old Port in a Stann
In order to understand how to talk to

a PC at the hardware leve~ you have to
begin by getting your head around how it
talks to itself. You can start by putting your
ear up to the ventilation grill and listening,

but this usually just gets you a drafty ear.
The ''bus" of the 8088 microprocessor

that drives a PC is actually several buses ...
sort of a transit company. Looking at
things from the point of view of the 1/0
bus connections - essentially the
processor's bus brought out to slots so we
can associate peripherals with it - we
have a power bus, a data bus, an address
bus and a miscellaneous signal bus. An
AT has still more buses, and an 80386
based system looks like downtown at rush
hour - we won't get into them just now.

, When the 8088 says that it feels like
writing a byte of data to a specific location
in memory, here's what actually happens.
The processor puts the number it wants to
load into the memory onto its data bus.
The data bus has eight lines, so the num
ber can be anywhere from zero to two
hundred and fifty five. Next, it puts the
number of the location in memory where
it wants the data to go on its address bus.
The address bus has twenty lines, so this
number can be anything from zero to a
megabyte. Finally, the processor pulls the

E&TTJ...-y1-

l

MEM W line of the miscellaneous signals
bus, which is a signal to write data to
memory.

We think of the memory in a PC as
being part of the computer, but the
processor sees it as being a peripheral. It's
a black box which stores things in a way
that's useful to the processor. As such, we
can envision the memory system of the PC
as a machine which stores numbers when
thL: MEM W line is pulled and spits them
back out when the MEM R, the memory
read line, is pulled.

In theory, the memory doesn't have to
be actual silicon memory. We might im
agine a tape transport with a long tape
capable of holding a million items of data.
When the MEM W line is pulled, the tape
transport moves the tape so that the item .
whose number is contained in the address
bus is over the tape head and writes the
number on the data bus to it. In theory, the
8088 could drive such a memory device
just as it drives normal IC memory. In
practice, of course, such a contraption
would be too slow to possibly be good for
anything, but it illustrates how the 8088 ac
tually regards its memory.

I bring this up because it points out
that memory doesn't have to be memory,
and, in some machines, frequently is not.
Suppose we built a circuit which would
watch the address bus for a particular
number and light up an lED every time
that number appeared on the bus. This is
pretty easy to envision; it would just be a
series of gates and inverters. If the number
it was looking for was one hundred, every
time the processor tried to read or write to
location one hundred, the LED would
light up for an instant.

Now, suppose we expanded this cir
cuit so that the number on the data bus
was shown on a display whenever the
processor accessed location one hundred
and it pulled the MEM W line, that is,
whenever it actually wrote data to this
location. Ah hah ... we've invented an out
put port.

We could make this into an input port
by having the circuitry read an external
condition in eight bits and jam it onto the
data bus whenever the processor accessed
location one hundred and pulled the
MEMRline.

This is a very simple sort of I/0 called
"memory mapping". It's used on Apple
][+ computers, for example, because it's
the only sort of I/0 that computer's
microprocessor knows how to do.
Memory mapped 1/0 has the advantage
that it's fast and easy to do, but it ties up
E&TTJ...-y1-

DATA 0
DATA 1
DATA 2
DATA 3
DATA 4
DATA :!
DATA 6
DATA 7

lOR
IOU

ADDA 0
ADDR 1
ADDA 2

ADDR 3
AOOA 4
ADDA 5
ADDR 6
ADDR 7
ADOR 8
AOOR 9

DATA
TO
AEST
OF
CARD

~--'-- SELECT

74LS02 74LS04 ~

Thi:li I ina indicates ..,/
lhal one of our 1/0
ports is baing
addressed

Fig. 1. A simple IO decoder derived from the IBM PC. It selects the pori range from 300H to
31FH.

memory space for what is actually a non
memory function. As you might have
noticed, PC users invariably want all the
memory they can get, and would be loath
to give any of it up if they could avoid it.

The PC does use some memory
mapped 1/0. The video board of a PC is
just a big chunk of .circuitry which makes a
range of memory appear as data on a pic
ture tube. If the processor writes to this
area of RAM, the screen contents change.
Of course, there is actually memory here,
although it lives on the video board and is
essentially part of the display circuitry.

Memory mapped 1/0 is faster than
the other kind of 1/0, which we'll get to in
just a sec, because in effect, the processor
gets to talk directly to the screen. In the
case of the PC's screen, which we'd like to
have operate as quickly as possible, the
design of the computer allows that it's
worth giving up some memory space to
come up with speedy communications.

For most of its basic 1/0, however, the
PC uses 1/0 ports. A port is a funny sort of
phenomenon. In some ways it behaves like
memory, but it lives off the memory bus
and, as such, the processor can access a
full house of memory and still have lots of
ports going.

The PC's use of ports is a bit erratic,
as we'll see.

One way of looking at 1/0 ports is
that they're just memory locations that the
memory system ignores. When the 8088
wants to write to memory location one
hundred, it puts one hundred on the ad
dress bus, data on the data bus and pulls
the MEM W line, as we've seen. When it
wants to write to 1/0 port one hundred, it
puts one hundred on the address bus, the
data on the data bus and it pulls the lOW
line. Because the MEM W line does
change, the data doesn't affect the con
tents of memory. The hardware which is
associated with the port, assuming there is

46

PC Ha'dwara Interfacing

any actually there, will watch the two buses
and this line and do something with the
data when its port is written to.

The whole process seems a bit artifi
cial, and, in a sense, it is. It's a protocol by
which the 8088 uses the same address and
data buses to communicate with both
memory and I/0 devices.

ln software, by the way, the machine
language to do these two analogous func
tions is also similar. This

MOVDX,lOO
MOV[DX],AL

would write to memory location one
hundred, while this

MOVDX,lOO
OUTDx,AL

would write to port one hundred. As
memory access is considerably more com
mon in a PC than is port access, there are
considerably more ways to handle varia
tions on the first case.

By using the address bus in this way,
the PC allows for multiple devices to sit on
the I/0 bus at once. Each device has ...
presumably ... a unique I/0 address, so that
the computer knows, for example, that
talking to port 03FSH will involve chatting
with the COMl serial port while port
03D8H is one of the registers of the video
card controller. The actual slots what the
devices sit in are all identical, and
peripheral cards, as a rule, don't care
which slot they're plugged into. They know
they're being spoken to when they see
their port numbers appear on the address
bus and the lOW or lOR - the I/0 read
line - pulled.

Kibbles and Bits
In practice, most peripheral cards have

more than one port, and we usually talk
about associating a range of ports with a
given I/0 function. If we consider a sin1ple
parallel printer interface, for example, at the
very least we would need one port to actually
send data to the printer and a second one to
control the beast.. to tell it when the data on
the first port is valid and ready to print, to tell
the printing software when the printer is
ready to accept data, whether it's out of
paper and so on

A basic subject of board design for
the PC, then, is the decoding of 1/0 ad
dresses. Before we can do anything clever,
we need a circuit which will look at the
buses of the computer, decide when our
card is being communicated with and ex-

48

tract the appropriate data from the data
bus. As we get into this, we'll fmd that
there arc other considerations to contend
with ... for example, it's desirable in many
cases to make the base of the range of ad
dresses which our card uses somewhat
variable, so that it can accommodate other
cards which might be in the system using
fixed ranged of port addresses.

Fig. 1 is a sin1ple 1/0 decoder, derived
from the now antediluvian original IBM
PC prototype card; it selects the port
range from 300H to 31FH, which is a bit
huge. This means that the line I've marked
SELECT will go high if one of these ad
dresses is placed on the address bus and
one of the I/0 lines is pulled, and it will
stay low for the rest of the tin1e.

Let's see what the beast is up to. We'll
start by looking at how to decode for the
address 300H

We can represent the hexadecimal
number 300H in binary as

1100000000

If you imagine an LED connected to
each line of the address bus, when the
nun1ber 300H was on the bus, the pattern
of on and off LEDs for the first ten lines
would correspond to the ones and zeros of
our binary representation of the data.

If we designed a circuit to look for the
following pattern in the upper two bits

11

we'd have a way of knowing whether
the address ranged from 0300H to
03FFH ... this involves simply watching for
the number three in the upper two lines of
the pertinent part of the bus. You can en
vision such a circuit pretty easily: it's just a
two input AND gate. Watch these two
lines and the lOW and lOR lines as well
and you've got an I/0 port decoder for this
admittedly too large range of addresses.

If we watch a slightly larger number
of lines.

110

and only raise our SELECT line
when that extra bit is zero, we'll have nar
rowed the range down to 0300H through
037FH. If we watch this range

1100

we can narrow it down to 0300H
through 033FH. Fmally, watching

11000

gets it down to 0300H to 031FH,
which is what we're after. If this pattern of
bits exists on the address bus in these posi
tions ... and either the lOW or lOR line
has been pulled ... the processor wants to
talk to a port in the range of 0300H
through 031FH, the ports our card is in
terested in.

The lower five lines are immaterial to
the task of deciding whether our port ad
dress range is being talked to, as these rep
resent the numbers from zero through
lFH, and our range of ports encompasses
all of them.

We'll need to deal with the lower five
bits later on, when we want to know which
particular port in our range of ports is
being dealt with, but that's another story.

The arrangement of gates at the bot
tom of the circuit diagram in figure one is
a fixed address decoder. If you care to
trace through it, you'll fmd that it watches
address lines five through nine for the pat
tern 11000, raising the DECODE line if it
spots them.

The NOR gate up in the centre of the
drawing watches the lOW and lOR lines.
It tells us when either of the lines is pulled,
as this indicates that some sort of port I/0
is happening. The status of the lOR line is
used to set the direction of Ul, which buf
fers the data. We only want data to go
out... that is, to be janm1ed onto the 8088's
data bus ... when the lOR line is high.

The 74LS02 AND gate after the
NOR gate gets the whole party together.lt
tells us when the address has been
decoded and an I/0 line is high. As such,
its output can be used to say when we ac
tually should be ready to do some work.
Notice that it also enables data transmis
sion through Ul; most of the time this is in
its tri-state mode, and does nothing.

The Load Out
At this point, we know how to make the
card decide whether it's being addressed
in a general way. The next step is to see
how to make it recognize individual port
addresses when it's spoken to, and then
what to do with these addresses. We'll
have a peek at some of this next month.

In the mean time, you might want to
dream up some actual applications for
cards you build yourself. Once you know
how to make your circuitry actually com
municate with the PC - pretty simple
stuff in the end - the rest is just solder
and blinding inspiration. We'll check out
some of that in the months to come too. •

E&TT J....-y 1-

