
32 ElEctronics ProjEcts vol. 26

Here is a Windows-based pro-
gram developed in Microsoft
Visual Basic programming

language for controlling eight devices
through the PC’s parallel port or Line
Printer Port (LPT). The program ac-
cepts the input in decimal number
and outputs in binary form across the
data pins of the PC’s parallel port for
controlling the connected devices/
appliances.

PC’s parallel port
The standard parallel port comprises
four control lines, five status lines
and eight data lines (refer to the table).
It is found on the back of the PC as
a D-type 25-pin female connector.

 adeeb raza Here, we are concerned only with
data lines D0 through D7 terminated
at pins 2 through 9. These data lines
are the primary means of sending
information out of the port. Pins
18 through 25 of the connector are
grounded.

Control lines of the parallel port
are used to provide control signals
such as ‘form feed’ and ‘initialise’ to
the printer.

The five status lines are the only in-
put lines of the standard parallel port.
These allow the printer to send signals
such as ‘error,’ ‘paper out’ and ‘busy’
to the PC.

Circuit description
Fig. 1 shows the block diagram for
device control through the PC’s paral-

deVice control
through pc’S parallel
port uSing ViSual baSic

lel port using Visual Basic. The data
output port of the PC’s parallel port is
used for controlling the devices or ap-
pliances. The interface circuit requires
regulated 6V DC to drive the loads.
Eight MCT2E opto-osolator ICs are
used to prevent damage to the parallel
port from short-circuit that may occur
across the interface circuit. Darlington
array IC ULN2803 is used to drive the
relays for controlling the devices.

Fig. 2 shows the circuit for device
control using the PC’s parallel port
programmed in Visual Basic. To get the
power supply for the circuit, 230V AC
mains is stepped down by transformer
X1, rectified by bridge rectifier R3151
and filtered by capacitor C1 (1000µF,
25V). The filtered output is fed to
input pin 1 of regulator IC 7806. The
regulated 6V DC is used to power the
interface circuit comprising ICs MCT2E
(IC2 through IC9) and ULN2803 (IC1).
Optocoupler MCT2E can be replaced
with 4N35.

LED1 through LED8 connected
across data output pins 2 through 9,
respectively, are used to indicate the

Parts LIst
Semiconductors:
IC1 - ULN2803 relay driver
IC2-IC9 - MCT2E optocoupler
IC10 - 7806 voltage regulator
BR1 - 1A bridge rectifier
Resistors (all ¼-watt, ±5% carbon):
R1-R16 - 220-ohm resistor
Capacitors:
C1 - 1000µF, 25V electrolytic
 capacitor
C2 - 0.1µF ceramic type
 capacitor
Miscellaneous:
X1 - 230V AC primary to 0-9V,

250mA secondary trans-
former

S1 - On/Off switch
RL1-RL8 - 6V, 100-ohm, 1C/O relay
 - 25-pin, D-type parallel-port

male connector

Fig. 1: Block diagram of device control through PC’s parallel port using Visual Basic

Parallel-Port Pin Details
Pin number Traditional use Port name Read/Write Port address Port bit

2-4 Data out Data port W Base D0-D2
5-9 Data out — W Base D3-D7
1 Strobe Control port R/W Base+2 C0
14 Auto feed — R/W Base+2 C1
16 Initialise — R/W Base+2 C2
17 Select input — R/W Base+2 C3
15 Error Status port R Base+1 S3
13 Select — R Base+1 S4
12 Paper end — R Base+1 S5
10 ACK — R Base+1 S6
11 Busy — R Base+1 S7

33ElEctronics ProjEcts vol. 26

Fi
g.

 2
: C

irc
ui

t f
or

 d
ev

ic
e

co
nt

ro
l t

hr
ou

gh
 P

C
’s

 p
ar

al
le

l p
or

t u
si

ng
 V

is
ua

l B
as

ic

status of the loads. Glowing of any of
these LEDs indicates that the device
connected to that specific output line
is ‘on.’

IC ULN2803 (Fig. 3) is a Darlington
array relay driver that can drive eight

relays. Since IC ULN2803 has an inter-
nal freewheeling diode to quench the
inductive kick, no external freewheel-
ing diodes are required across the
relay coils. The devices are connected
through the relay contacts to mains.

The relays are used
to switch on or off
the appliances.

Software
program
Before going into de-
tails of the program,
let us figure out some
limitations of Visual
Basic programming
for interfacing the
circuit. Visual Basic
cannot directly ac-
cess the computer
hardware to control
the external world.
All the hardware
requests must go
through the sup-
ported file format of
Windows operating
system.

So the best way
to manipulate the
parallel port is the
printer object. The
printer object allows
text and graphics to
be printed on the
printer through the
parallel port of the
PC. While all is well
with this option, it
is useless when you
want a direct con-
trol of the hardware.
In order to control
the port directly, we
must use something
external to our pro-
gram. A dynamic
link library (DLL)
file called ‘WIN95IO.
DLL’ is used for that
purpose.

The WIN95IO.
DLL file is meant
for a 32-bit machine,

supported by Visual Basic Versions
4, 5 and 6. No matter which version
you are using, the DLL file must be
in the Windows\system directory of
your machine. The interface control
software program can be developed

34 ElEctronics ProjEcts vol. 26

Fig. 3: Pin details of ULN2803

Fig. 4: Screen that appears when program is run

Fig. 5: Actual-size, single-side PCB layout for device control through PC’s parallel port
using Visual Basic

Fig. 6: Component layout for the PCB
thereon. No matter which DLL you
use, it won’t work under Windows NT
due to security reasons.

The program code is given at the
end of this article. It is assumed here
that Microsoft Visual Basic 6 is in-
stalled on your PC and you have the
basic programming knowledge.

The program coding is simple and
you can write it yourself. Launch Vi-
sual Basic from the desktop and open a
new project by selecting the ‘Standard
EXE’ option. By default, it will open an
empty project window on the screen
with ‘Form 1’ as the file name. The
form is one of the supported files of the

Visual Basic. Pick the required compo-
nents as shown in the screenshot (Fig.
4) from the toolbox on the left-hand
side of the screen. The properties of
each component can be set from the
right-hand side of the screen.

The coding starts by declar-
ing ‘WIN95IO.DLL’ in the first line
“Private Declare Sub vbOut Lib
‘WIN95IO.DLL’ (ByVal AEPPort As
Integer, ByVal AEPData as Integer).”
The computer port is defined as ‘AEP-
Port.’ Its base address is assigned
as 378 (in hex) by the program line
“AEPPort=&H378.” The ‘vbOut’ state-

ment is used to send a bit to a port, for
example, ‘vbOut [port],[number]’

When you are done with coding,
compile and run the program. You’ll
get the screen as shown in Fig. 4. Save
the project file with ‘.vbp’ extension.
Make the executable file from ‘File’
menu.

EFY note. Form 1 is named as ‘Ar-
port’ and Project 1 file as ‘Arport.vbp.’

Construction
Construct the circuit for device con-
trol on any general-purpose PCB. Use
eight flexible wires for data bus (D0

35ElEctronics ProjEcts vol. 26

sourcE codE (arport)

Private Declare Sub vbOut Lib “WIN95IO.DLL”

(ByVal AEPPort As Integer, ByVal AEPData as

Integer)

Dim AEPPort As Integer

Dim AEPData As Integer

Sub AEPOut(Data As Integer)

vbOut AEPPort, AEPData

End Sub

Private Sub Form_Load()

Shape1.Visible = False

pat = 0

End Sub

Private Sub Command1_Click()

AEPPort = &H378

pat = Text1.Text

AEPData = Val(pat)

AEPOut (Data)

If pat = “” Then GoTo y Else GoTo x

x:

Shape1.Visible = True

Shape2.Visible = False

y:

End Sub

Private Sub Command2_Click()

AEPPort = &H378

pat = 0

AEPData = Val(pat)

AEPOut (Data)

Shape1.Visible = False

Shape2.Visible = True

End Sub

Private Sub Command3_Click()

AEPPort = &H378

pat = 0

AEPData = Val(pat)

AEPOut (Data)

End

End Sub

through D7) by connecting their one
end to the PCB and the other end to
the respective data pins of the 25-pin,
D-type parallel-port male connector.
This male connector connects to the
female connector on the PC. An actual-
size, single-side PCB for the circuit and
its component layout are shown in
Figs 5 and 6, respectively.

Testing procedure
1. Install Microsoft Visual Basic 6 on
your system.

2. Fabricate or get the PCB shown

in Fig. 5.
3. Connect the 8-data line male

connector to the female connector on
the PC.

4. Launch Visual Basic from the
desktop and develop the application
as explained in the software program
section. Save the project file with ex-
tension ‘.vbp.’ Alternatively, you can
copy the executable file ‘Arport’ from
the EFY-CD to your system.

5. Open ‘Arport’ and click ‘Input
Edit’ box. You’re prompted to input the
data in decimal form. For example, input

‘5’ and click ‘On’ button using mouse.
The indicator on the screen will turn
‘red.’ Then LED7 and LED5 connected
across the parallel port will glow, which
corresponds to binary output ‘00000101.’
The appliances connected to the respec-
tive output lines will turn on.

6. To turn off the appliances, click
‘Off’ button on the screen.

7. To exit the application, click
‘Quit’ button.

Download source code: http://
www.efymag.com/admin/issuepdf/
Device%20Control.zip

