High-Grade DATA CONVERTER FOR THE APPLE II

By Robert C. Nicklin

Part 2: Checkout, calibration, and use

Last month, we discussed the principles of A/D and D/A conversion and described a converter for the Apple II. Here are the software and instructions needed to operate the converter.

Checkout \& Calibration. Plug one end of a ribbon cable with DIP headers on each end into Port A at SO4 on the interface adapter. Then, making sure the Apple computer is powered down, install the VIA in slot 5 of the computer. Plug the other end of the cable into a solderless-socket breadboard and use wire jumpers to connect D0 through D7 to ground at pin 11. Switch on the computer and wait for the prompt to appear onscreen. Measure the voltages at pins 50,33 , and 25 of the computer's bus connector; they should read +12 , -12 , and +5 V , respectively.

For the following discussion, the interface is assumed to be plugged into slot 5 of the computer and all data lines are grounded.

Enter and run Program 1 to test the input to Port A. Displayed on-screen should be a running column of 0 s read in from Port A. One at a time, remove the data line jumpers from ground and note the change in status dis-
played on-screen. As each data line is ungrounded, it should display a 1 on the screen. If it doesn't, the interface adapter most likely isn't plugged into slot 5 of the computer and/or the program hasn't been correctly entered. If the problem still persists after making sure that the adapter is in slot 5 and the program has been properly entered, use a dual-trace oscilloscope to check the IC7 delay circuit. For proper operation, the signal observed at pin 6 of IC7 should be delayed by about 180 ns with respect to the signal at pin 1 .

Remove the ground connections

from D0 through D7 and load and run Program 2 to test the output. For Byte $=0$, there should be no voltage (0 volt) between each data line and ground; for Byte $=255$, each data line should be at +5 volts; for Byte $=55$, D0 through D7 should be 10101010, etc.

Load and run Program 3 to test control line CA2. Making measurements at $J 6, \mathrm{CA} 2$ should be 0 V for $\mathrm{PC}=12$ and +5 V for $\mathrm{PC}=14$.

To test Port B, power down the computer and move the DIP cable to SO 3 . Repeat the above three tests, changing the POKE and PEEK addresses for DDRB and ORB as detailed in Table I. The PCR address doesn't change, but the values for PC change to 192 for 0 V and 224 for +5 V to operate CB2.

Having ascertained proper port and control operation, remove the ICs from the Data Converter assembly, power down the computer, and plug the 16-pin DIP cable into SO3, the Port B connector. Power up the computer and confirm that +12 , -12 , and +5 V are present at the appropriate IC socket pins. (Bear in mind that under these no-load conditions some non-power pins will measure high.) Having con-
firmed that the proper voltages are present at the appropriate pins, power down the computer, insert the ICs in their respective sockets (take care to observe proper orientation), and power up once again.

Connect a voltmeter to $J 2$ and ground the center connector of $J 1$ to begin testing the analog amplifier. Set the project's Gain switch to 1 and adjust trimmer R3 for a $0-\mathrm{V}$ output. Set the Gain switch to 500 and adjust $R 3$ for minimum positive output. To check calibration of the GAIN control, remove the short from across $J 1$ and replace it with a $10,000-$ ohm potentiometer connected across a D cell (use the wiper and one end lug of the pot to make connections to the converter circuit) to provide the dc signal input. Make up a table of input vs output for each of the six positions of the Gain switch for use in making software corrections to compensate for nonlinearities in gain.

If you have access to an audio oscillator and an oscilloscope, feed sine waves into $J 1$ and monitor $J 2$ to observe that the amplifier has reasonably flat response from dc to 15 kHz .

Enter and run Program 4 to check D/A conversion. A voltmeter connected between DAC $J 5$ and ground should indicate 0 V when DB is 0 and 2.55 V when DB is 255 .

Use Program 5 to generate a square wave whose pitch is controlled by the value of P for checking the audio amplifier. This square-wave signal can be observed at $J 5$ with a scope.

Program 6 sets DDRB $=0$ for all inputs for testing the digital I/O lines. D1 through D6 will float high while D0 and D7 are checked. The running display produced by this program will change according to whether D0 or D7 is shorted (see Table II).

A/D conversion is tested with Program 7. This simple diagnostic program is written in BASIC, which is slow enough to complete a conversion before being read. Results are continuously displayed on-screen. With $J /$ grounded and the GAIN switch set to 1 , the reading should be 0 on dc and about 127 on ac. Connect the pot/D-cell assembly to $J 1$ and slowly vary the setting of the pot (dc input level). The on-screen display should follow the changes. Make sure the -9 -volt reference is present at pin 2 of IC2. A scope connected to trig J6 should reveal CB2 going high for about one-third or one-quarter of the pulse cycle. Without this pulse, no A/D conversion is possible.

Set AC/DC switch $S 2$ to DC for ampli-

PROGRAM 1		
100	REM	PROGRAM \#1
120	REM	PORT A INPUT TEST
130	REM	6522 VIA IN SLOT 5
150		
	REM	SET PORT A DDRA FOR INPUT
$170 \mathrm{D}=0$		
180 POKE 49363, D		
	REM	READ ORA WHILE CHANGING
	REM	JUMPERS FROM DO-D7 TO GROUND
220 PRINT PEEK (49375)		
230 :		
240 FOR PAUSE $=1$ TO 200: NEXT		
	GOTO	

PROGRAM 2

100 REM	PROGRAM \#2
120 REM	PORT A OUTPUT TEST
130 REM	6522 VIA IN SLOT 5
$150:$	
160 REM	SET PORT A DDRA
	FOR OUTPUT
170 D $=255$	
180 POKE	$49363, D$
190	
200 INPUT	"BYTE"; B
210 REM	OUTPUT BYTE TO
	PORT A
220 REM	TEST DO-D7 WITH
	VOLTMETER
230 POKE	49375, B
240 GOTO	200

PROGRAM 3

100 REM
120 REM
125 REM
130 REM
150
160 REM
170 REM
180
190 INPUT
200 POKE
210 GOTO
PROGRAM \#3
PORT A CONTROL LINE CA2 TEST 6522 VIA IN SLOT 5

CA2 GOES LOW ON 12 AND HIGH ON 14
"PCR BYTE=?"; PB 49372, PB 190

PROGRAM 4

100 REM	PROGRAM \# 4
120 REM	DAC TEST
130 REM	6522 VIA IN SLOT 5
$150:$	
160 REM	SET DDRB FOR OUT
170 POKE	49362,255
$180:$	
190 REM	SET CB2 HIGH SO DAC
200 REM	CHIP ENABLE IS LOW
210 POKE	49372,224
$220:$	
230 REM	OUTPUT DB TO DAC
	AR ORB
240 INPUT	"DAC BYTE $=$?";DB
250 POKE	49360, DB
260 GOTO	240

PROGRAM 5

```
100 REM PROGRAM #5
120 REM AUDIO AMP TEST
130 REM 6522 VIA IN SLOT 5
150:
160 REM SET DDRB FOR OUTPUT
170 POKE 49362,255
180
190 REM SET CB2 HIGH SO DAC
200 REM CHIPENABLEISLOW
210 POKE 49372,224
220
230 INPUT "PAUSE BYTE=?";P
240 POKE 49360,0: GOSUB 290
250 POKE 49360,255: GOSUB 290
2 6 0 \text { GOTO } 2 4 0
2 7 0 \text { END}
290 FOR PAUSE = O TOP:
    NEXT: RETURN
```


PROGRAM 6

100 REM	PROGRAM \#6
120 REM	DIGITAL I/O TEST
130 REM	6522 VIA IN SLOT 5
$150:$	
160 REM	SET DDRB FOR INPUT
170 POKE	49362,0
$180:$	
190 REM	GROUND DO OR D7
	(4 WAYS)
200 PRINT	PEEK (49360)
210 GOTO	200

PROGRAM 7

100 REM	PROGRAM \#7
120 REM	ADC TEST
130 REM	6522 VIA IN SLOT 5
$150:$	
160 REM	SET DDRB FOR INPUT
170 POKE	49362,0
180	
190 REM	MAKE READ HIGH
	(WITH CB2)
200 REM	AND START
210 POKE	CONVERSION
49372,224	
$220:$	
230 REM	MAKE READ LOW
240 REM	(WITH CB2)
	PREPARE TO READ
250 POKE	CONVERSION
$260:$	
270 REM	READ ADC
280 PRINT	PEEK (49360)
$290:$	
300 GOTO	210

tude calibration. Apply the full potential from the D cell to $J 1$. Assume this to be 1.46 V , the voltmeter will indicate 7.01 V with the GAIN switch set to 5. This means that gain is actually 4.80

TABLE I-6522 VIA

 ADDRESSES, SLOT 5| Starting address | 49360 (\$CODO) |
| :--- | :--- |
| DDRA | 49363 |
| ORA | 49375 |
| DDRB | 49362 |
| ORB | 49360 |
| PCR | 49372 |
| ACR | 49371 |

TABLE II-DIGITAL I/O TEST

D7 D6	D5 D4 D2 D2 D1 D0	Screen						
0	1	1	1	1	1	1	0	126
0	1	1	1	1	1	1	1	127
1	1	1	1	1	1	1	0	254
1	1	1	1	1	1	1	1	255

(7.01/1.46), although the A/D converter actually "sees" 7.01 V . Measure reference voltage $\mathrm{V}_{\text {REF }}$ between $J 3$ and ground. Assume it to be 8.56 volts. With full scale for the converter being 255 for any $\mathrm{V}_{\mathrm{REF}}$, the A / D converter will produce 209 (7.01/8.56). Working backward, we find that $\mathrm{V}_{\text {INPUT }}=(\mathrm{A} / \mathrm{D}$ output/gain) $\times\left(\mathrm{V}_{\mathrm{REF}} / 255\right)$. This means that conversion accuracy depends on voltmeter accuracy. Often, true $\mathrm{V}_{\text {INPUT }}$ isn't needed, since relative amplitude will be sufficient.

Frequency accuracy requires use of a frequency counter to set a square-wave generator to 1000 Hz (the actual frequency isn't important as long as it is known). Feed the square waves into $J 1$ and use Table III to run the A/D converter fast enough to digitize the waveform. The Apple monitor program can be used to "look at" the bytes in memory. Another way to do this is to use a short BASIC program written to PEEK the bytes onto the screen. In either case, count the number of bytes per complete
cycle of the square wave and multiply by the frequency to obtain A / D conversion sampling rate. If the A / D timing bytes are changed, this frequency calibration can be performed and recorded for a range of digitizing rates.

Operation Under Assembly Language. For A/D or D/A at rates of less than 50 samples per second, such BASIC programs as those in Programs 1 through 7 are adequate. To realize rates up to 17,000 samples per second for A/D and output rates to 33,000 bytes per second with D/A, both converters must be operated with assembly-language programs. Table III is for A/D, while Table IV is for D/A code.

Operation of Table III code is similar to operation of Program 7. Port A DDRA is set for input with the A/D converter getting a high on its Read line via CA2 to initiate conversion. A loop of at least 20μ s allows the A/D section to convert the input signal. When the Read line goes low, via CA2, conversion

TABLE III-ADC ASSEMBLY LANGUAGE

\$9300	A9 00	START	LDA	\$00	
02	A8		TAY		INITIALIZEY
03	85 FE		STA	MEM	SET START OF DATA STORAGE-
05	A9 88		LDA	\$88	ALTER FROM BASIC
07	85 FF		STA	MEM +	
09	A9 00		LDA	\$00	MAKE PORT A ALL INPUTS
OB	8D D3 C0		STA	DDRA	
OE	78 EA EA		SEI		
11	A9 0	ADC	LDA	\$0E	MAKE READ HIGH, START CONVERSION
13	8D DC CO		STA	PCR	
16	A2 05		LDX	\$05	GIVE ADC > 20 MICROSECONDS
18	CA	WAIT1	DEX		TO CONVERT
19	DO FD		BNE	WAIT1	
1B	A9 0C		LDA	\$0C	MAKE READ LOW, PREPARE TO
1D	8D DC C0		STA	PCR	READ ADC
20	AD DF C0		LDA	ORA	READ ADC
23	91 FE		STA	(MEM), Y	STORE DATA
25	204093		JSR	MSEC	DELAY BETWEEN SAMPLES
28	C8		INY		
29	D0 E6		BNE	ADC	
2 B	E6 FF		INC	MEM +	PREPARE TO FILL NEXT MEMORY PAGE
2 D	A6 FF		LDX	MEM +	WITH DATA
2 F	E0 92		CPX	\$92	CHECK FOR END OF MEMORY
31	D0 DD		BNE	ADC	
33	58		CLI		
\$9334	60		RTS		
\$9340	A9 00	MSEC	LDA	\$00	SET VIA TIMER 2 FOR ONE-SHOT
42	8D DB C0		STA	ACR	TIME INTERVAL
45	A9 E8		LDA	\$E8	\$03E8 GIVES ABOUT 1 msec
47	$8 \mathrm{DD8} \mathrm{C0}$		STA	T2L	INTERVAL-POKE CHANGES
4A	A9 03		LDA	\$03	FROM BASIC
4 C	8D D9 C0		STA	T2H	
4F	A9 20		LDA	\$20	TIMER 2 INTERRUPT FLAG MASK
51	2C DD C0	WAIT2	BIT	IFR	IS FLAG SET?
54	F0 FB		BEQ	WAIT2	IF NOT, THEN LOOP
56	AD D8 C0		LDA	T2L	TIMED OUT-CLEAR FLAG
\$9359	60		RTS		

\$9200	A9 FF		LDA	SFF	SET UP PORT A FOR OUTPUT
02	8D D3 CO		STA	DDRA	TO DAC
05	A5 FE		LDA	FE	SAVE CONTENTS OF TWO ZERO PAGE
07	48		PHA		ADDRESSES USED FOR MEM AND MEM +
08	A5 FF		LDA	FF	IN (IND), Y ADDRESSING
OA	48		PHA		
OB	EA		NOP		
OC	A9 00	START	LDA	\$00	INITIALIZE Y FOR (IND), Y MEMORY SCAN
OE	A8		TAY		
OF	85 FE		STA	MEM	START DATA READOUT AT $\$ 8800$
11	A9 88		LDA	\$88	
13	85 FF		STA	MEM +	
15	EA		NOP		
16	78		SEI		MAKE DAC OUTPUT GLITCHLESS
17	A9 0C		LDA	\$0C	MAKE CA2 LOW TO TURN OFF DAC
19	8D DC C0		STA	PCR	
1 C	A9 0E		LDA	\$0E	MAKE CA2 HIGH TO TRIGGER SCOPE
1E	8D DC C0		STA	PCR	AND ENABLE DAC
21	EA		NOP		

NOTE: CA2 GETS INVERTED BEFORE IT GETS TO DAC, BY 7416 HEX INVERTER

22	B1 FE	DAC	LDY	(MEM), Y	DISPLAY MEMORY CONTENTS
24	8D DF C0		STA	ORA	ON SCOPE
27	205092		JSR	DELAY	
2 A	C8		INY		DAC GETS ONE PAGE AT A TIME
2 B	D0 F5		BNE	DAC	
2 D	E6 FF		INC	MEM +	MOVE TO NEXT PAGE
2 F	A6 FF		LDX	MEM +	TO CHECK FOR TOP LIMIT
31	E0 92		CPX	\$92	
33	DOED		BNE	DAC	
35	EA		NOP		
36	58		CLI		
37	C6FD		DEC	NSCAN	HAVE N SCANS BEEN COMPLETED?
39	A5 FD		LDA	NSCAN	
3B	DO CF		BNE	START	
3D	EA		NOP		
3 E	68		PLA		
3 F	85 FF		STA	FF	REPLACE ZERO PAGE CONTENTS
41	68		PLA		
42	85 FE		STA	FE	
\$9244	60		RTS		
\$9250	A2 02	DELAY	LDX	\$N	DELAY BYTE
52	CA		DEX		
53	DO FD		BNE		
55	60		RTS		

TABLE V-CLEAR MEMORY ASSEMBLY LANGUAGE

\$9280	A0 00		LDY	\$00	INITIALIZE Y FOR (MEM), Y
82	A5 FE		LDA	FE	SAVE CONTENTS OF TWO ZERO PAGE
84	48		PHA		MEMORY LOCATIONS USED FOR
85	A5 FF		LDA	FF	(IND), Y ADDRESSING OF
87	48		PHA		MEM AND MEM +
88	A9 88		LDA	\$88	START CLEARED AREA AT PAGE $\$ 88$
8A	85 FF		STA	MEM +	
8 C	A9 00		LDA	\$00	
8 E	85 FE		STA	MEM	
90	A9 00		LDA	\$00	BYTE TO FILL MEMORY
92	91 FE	CLEAR	STA	(MEM), Y	
94	C8		INY		FILL MEMORY
95	D0 FB		BNE	CLEAR	
97	E6 FF		INC	MEM+	
99	A6 FF		LDX	MEM +	
9B	E0 92		CPX	\$92	
9 D	D0 F3		BNE	CLEAR	
9 F	68		PLA		REPLACE ZERO PAGE CONTENTS
AO	85 FF		STA	FF	
A2	68		PLA		
A3	85 FE		STA	FE	
A5	60		RTS		

TABLE VI-APPLE ADC LOCATIONS (SLOT 5 ASSUMED)

Hex	Address Decimal	Explanation

	low	high
CA2	$\$ 0 \mathrm{C}$	\$OE
	12	14
CB2	$\$ C 0$	\$EO
	192	224

TABLE VII-APPLE DAC LOCATIONS (SLOT 5 ASSUMED)

| Hex | Address
 Decimal | Explanation |
| :--- | ---: | :--- | :--- |

TABLE VIII-CLEAR MEMORY LOCATIONS (SLOT 5 ASSUMED)

Hex	ress Decimal	Explanation
\$9280	37504	BEGINNING OF PROGRAM
9289	37513	SET HIGH BYTE, START OF CLEARED AREA
928D	37517	SET LOW BYTE, START OF CLEARED AREA
9291	37521	BYTE TO FILL MEMORY WITH
929 C	37532	PAGE NUMBER FOR END OF CLEARED AREA
		-DON'T CLEAR BEYOND THIS (PAGE 146 MAXIMUM)
		-PAGE 146 (\$92) MEANS \$91FF IS LAST LOCATION
92A5	37541	THAT WILL BE CLEARED LAST BYTE OF PROGRAM

NOTE: $\$ 8800-\$ 91 F F$ ARE SET ASIDE FOR ADC, DAC. DATA STORAGE \$9200-\$93FF ARE SET ASIDE FOR DAC, CLEAR MEMORY AND ADC ASSEMBLY LANGUAGE PROGRAMS
is latched so it can be read out from ORA. The sample is stored and a delay subroutine is called. The program determines if alotted memory is full; if it isn't, it sends a Read high for another conversion.
Operation of the D/A converter under the listing given in Table IV proceeds as in the BASIC listing in Program 7. Port A DDRA is set for output. A high on CA2 triggers a scope connected to $J 6$ and, after inversion by IC4, pulls low the D/A converter's Chip Enable line. A byte is then fetched from memory and sent to the D/A converter via ORA. The program then checks whether or not the memory specified has been scanned; if it hasn't, another byte is sent to ORA. After completing a set number of scans, the program returns to the routine that called it.

Table IV can be used to clear a specific block of memory before filling it with data from the A/D converter, or before storing the output from the D/A converter. Although memory clearing can be performed from BASIC, it's too slow for more than a 1 K -byte block of memory used for repeated measurements.

Operation Under BASIC. The various assembly-language programs presented in this article are best used as subroutines called from a BASIC driver program. It's easy to set memory limits and data rates and change to the alternate port by POKEing new values into the assembly-language code. This permits use of the fast assembly-language routines without having to be familiar with assembly-language programming. The BASIC listings for Apple DAC, Apple ADC, and Clear Memory contain the three assembly-language programs discussed. Tables VI, VII, and VIII list the POKE values required to tailor the routines to your purposes.

These programs all assume you're using an Apple II Plus computer with 48 K of user RAM and slot 5 in the computer. The memory map in Table IX reveals where everything is stored. If you're using a disk drive, you can keep the DOS from overwriting the machine-language program by booting the DOS, setting HIMEM:34815 and then loading the BASIC program. This protects operation by putting data storage and machine language above BASIC and below the DOS. Memory locations 34816 through 37375 are for data storage; 37376 through 37721 for the D/A, Clear, and A/D; and 37722 through 38399 for data or expansion.

The three assembly-language routines can be easily relocated, since
except Apple ADC, they contain no absolute addresses. Because delay routine MSEC calls $\$ 9326$ (memory location 37670) and $\$ 9327$ (location 37671), Table III must be changed to fit the new location. If slot 5 in the computer isn't used, the correct VIA address for the slot must be POKEd.

Capturing Waveforms. The Waveform Program combines D/A, A/D, and Clear routines and illustrates use of the VIA and Data Converter. The purpose here is to capture an audio waveform and display it on the CRT screen of an oscilloscope.

Load the Waveform Program, connect a microphone to $J 1$ and a scope to $J 2$, and set $S 2$ to AC. Sing a steady "o-o-$\mathrm{o}-\mathrm{h}-\mathrm{h}-\mathrm{h}$ " tone into the mic and set the

GAIN switch for a peak-to-peak signal level of less than 9 volts. Connect a lead from TRIG $J 6$ to the scope's trigger input and adjust the scope for a triggering. RUN the program while holding a note.

The computer will capture and display 1280 samples of the-waveform. Since these samples are stored in memory, they can be SAVEd on disk, written to a printer, or plotted on a strip chart, or the waveform could be Fourier analyzed if desired.

With some minor changes in the BASIC program, 256 samples of each of 10 different waveforms could be captured and selectively analyzed. Alternatively, they could be plotted in HIRES with about a 25% loss in vertical resolution, on 192 vertical points for 256 from the A/D converter.

TABLE IX-APPLE DATA CONVERTER MEMORY MAP		
HEX		DECIMAL
SFFFF	APPLE USES	65535
\$C100		49408
\$C0FF	PERIPHERAL CARD I/O SPACE FOR	49407
\$C080	6522 VIA (8 SLOTS)	49280

APPLE USES		
$\begin{aligned} & \text { \$BFFF } \\ & \$ 9600 \end{aligned}$	DOS	$\begin{aligned} & 49151 \\ & 38400 \end{aligned}$
$\begin{aligned} & \$ 95 \mathrm{FF} \\ & \$ 935 \mathrm{~A} \end{aligned}$	SPACE FOR MACHINE LANGUAGE PROGRAMS (MLP) OR CONVERTER DATA	$\begin{aligned} & 38399 \\ & 37722 \end{aligned}$
$\begin{aligned} & \$ 9359 \\ & \$ 9300 \end{aligned}$	ADC MLP	$\begin{aligned} & 37721 \\ & 37632 \end{aligned}$
	80 BYTES FOR MLP	
$\begin{aligned} & \$ 92 A 5 \\ & \$ 9280 \end{aligned}$	CLEAR MEMORY MLP	$\begin{aligned} & 37541 \\ & 37504 \end{aligned}$
	40 BYTES FOR MLP	
$\begin{aligned} & \$ 9257 \\ & \$ 9200 \end{aligned}$	DAC MLP	$\begin{aligned} & 37463 \\ & 37376 \end{aligned}$
$\begin{aligned} & \text { \$91FF } \\ & \$ 8800 \end{aligned}$	ADC/DAC DATA STORAGE (PAGES 136-145)	$\begin{aligned} & 37375 \\ & 34816 \end{aligned}$
$\begin{aligned} & \text { \$87FF } \\ & \$ 6000 \end{aligned}$	FOR BASIC PROGRAMS (SET HIMEM:34815)	$\begin{aligned} & 34815 \\ & 24576 \end{aligned}$
$\begin{aligned} & \text { \$5FFF } \\ & \$ 2000 \end{aligned}$	HIGH RESOLUTION GRAPHICS	$\begin{array}{r} 24575 \\ 8192 \end{array}$
$\begin{aligned} & \text { \$1FFF } \\ & \text { \$0C00 } \end{aligned}$	FOR BASIC PROGRAMS	$\begin{aligned} & 8191 \\ & 3072 \end{aligned}$
$\begin{aligned} & \text { \$0BFFF } \\ & \$ 0000 \end{aligned}$	APPLE USES	3071 0

