
52 Electronics projects Vol. 26

Controlling electronic devices
from a PC is fun. Here is a
scrolling message display that

makes use of the PC’s parallel port.
The message typed from the key-
board of the PC is displayed on the
light-emitting diodes arranged as 5×7
dot-matrix display in moving message
format.

LED-based scrolling message
displays are increasingly being used
at railway stations, public places,
colleges, universities, hospitals,
general stores, etc for disseminating
information. However, most displays
lack in storage capacity and cannot
display a large number of characters
at a time.

This PC-based LED scrolling
message display has the following
features:

1. The message to be displayed is
stored in a file and the message length
to be displayed is limited only by free
memory space on the hard disk of the
computer.

2. The number of characters dis-
played at a time can be as high as 30.

3. The message stored in the file
can be changed using any text editor
including Notepad.

4. The running speed of the mes-
sage displayed can be increased or
decreased by pressing a few keys.

Here, the circuit is designed for
displaying English characters on a 35
(5×7) LED dot-matrix display.

The PC’s parallel port (LPT port)
is used to output the display code and
the clock signal for the scrolling mes-
sage display.

The parallel port is terminated into
a 25-pin D-type female connector at
the back of the PC. IBM PCs usually
come with one or two LPT ports. Each
parallel port is actually made up of

 SURESH KUMAR

three ports, namely, data port, status
port and control port. Here, only data
port is used for this scrolling message
display.

Pins 2 through 9 form the 8-bit
data output port. This is purely a
write-only port, which means it can
only output data. The base address of
the first parallel port (LPT1) is ‘378H’
or ‘888’ (decimal).

Parallel-input parallel-output
(PIPO) registers are used to shift the
signal from right to left. The clock
pulse and code signal are generated
by the computer program and output
from the parallel port (base address
0×378). Theoretically, we can add infi-
nite number of PIPO registers but the
maximum number of registers is actu-
ally limited to the current triggering
value of the clock pulse. To add a large
number of PIPO registers, amplify the
clock pulse prior to connecting it to the
PIPO ICs.

Circuit description
Fig. 1 shows the circuit for the scroll-
ing message display. IC 74174 has been
used as PIPO register, which compris-
es high-speed, hex D-type flip-flops. It
is used as a 6-bit edge-triggered stor-
age register. The data on the inputs of
the flip-flop is transferred for storage
during high-to-low transition of clock.
Data lines D0 through D5 of the paral-

PC-based Scrolling
Message Display

lel port are connected to the input pins
of the first flip-flop (IC2). The output
of IC2 is fed to the next flip-flop IC in-
put as well as LED. Data line D6 is fed
to IC8, while data line D7 is connected
to the clock inputs of IC2 through IC8.
Clock pins of all the flip-flop ICs are
connected together. Master reset pin 1
of all the flip-flops is connected to Vcc.
Pins 18 through 25 of the parallel port
are grounded. As data present on lines
D0 through D6 shifts from the first
stage to the next stage, and so on, the
message appears as scrolling on the
dot-matrix LED display.

The present circuit supports a
display made of 42 LEDs comprising
seven rows and six columns. Up to 30
such units can be added with no change
in the circuit. However, to add these
units, you need to amplify the clock
pulse output. Note that each character
is displayed in a matrix of 5 columns
and 7 rows (explained later), hence the
sixth-column LEDs form part of the next
character (column 1).

Fig. 2 shows the power sup-
ply circuit. The AC mains is
stepped down by transformer X1
to deliver a secondary output of
7.5V AC at 1A. The transformer
output is rectified by a full-wave
bridge rectifier comprising diodes
D1 through D4, filtered by capacitor
C1, then regulated by IC 7805C (IC1) to
provide regulated 5V DC to the circuit.

An actual-size, single-side PCB for
the circuits in Figs 1 and 2 is shown
in Fig. 5 and its component layout in
Fig. 6.

EFY note. Commercially 7×5 dot-
matrix displays with discrete LEDs
may not be easily available in the mar-
ket, therefore a perforated board with
holes for the LED leads may be used.
The layout of such a board is shown in
Fig. 7. The holes are used for passing
the LED leads.

Parts List
Semiconductors:
IC1	 -	7805C 5V regulator
IC2-IC8	 -	74174 hex D-type flip-flop
D1-D4	 -	1N4007 rectifier diode
LED1-LED42	 -	Red LED

Resistors (all ¼-watt, ±5% carbon):
R1- R42	 -	150-ohm

Capacitors:
C1	 -	470µF, 16V electrolytic
Miscellaneous:
X1	 -	230V AC primary to 7.5V,

1A secondary transformer

53Electronics Projects vol. 26

Fi
g.

 1
: C

irc
ui

t o
f L

E
D

-b
as

ed
 s

cr
ol

lin
g

m
es

sa
ge

 d
is

pl
ay

The software

The software for the scrolling
message display has been de-
veloped in ‘C’ language and
compiled in ‘Turbo C.’ When
you run the scroll.exe file,
the program tries to open the
message.txt file. If this file is
not present in the same direc-
tory, it creates one with text
“Welcome! You are watching
running led display...” and
starts sending this message to
the circuit via the parallel port
for display on 5×7 dot-matrix
pattern.

To increase the running
speed of the message, press
‘I’ key, and to decrease the
speed, press ‘D’ key. Press ‘R’
key for displaying the message
from the beginning. When the
program reaches the end of
the message, it starts from the
beginning again. To change the
text being displayed, exit the
program by pressing ‘Esc’ and
edit the message.txt file using
Notepad. After making changes
to the message.txt file, save it
and execute the scroll.exe file.

The program makes use of
the outportb() function, which
works perfectly only on Win-
dows 95/98. However, the pro-
gram may not work with the
latest Window versions such as
Windows 2000/XP .

When you try to save
changes in the message.txt file,
the window shows an error
saying “Can’t save message.txt.
It is being used by some other
application.” This is because
the scroll.exe file is running.
So exit the program by press-
ing ‘Esc’ key, then save your
changes made to the message.
txt file and run the scroll.exe
file. Now you can view your
changes in the message being
displayed.

The program does not show
special characters like ‘/,’ ‘\,’

54 Electronics projects Vol. 26

Fig. 2: Power supply

Fig. 3: Design of character ‘A’ Fig. 4: Design of character ‘<’

Fig. 5: Actual-size, single-side PCB for the LED-based scrolling message display including power supply

Fig. 6: Component layout for the PCB

‘~,’ ‘@,’ ‘#,’ ‘$,’ ‘%,’
‘^,’ ‘(,’ ‘),’ ‘{,’ ‘},’ and
‘;.’ It has been de-
veloped for display-
ing alphabets (‘A’
through ‘Z’), digits
(‘0’ through ‘9’) and
some special charac-
ters like ‘.,’ ‘,,’‘!,’ ‘–,’

‘+’ and ‘_.’
Other special characters can be

added as follows: Suppose you want
to display character ‘A.’ Draw ‘A’
on the 5×7 LED display as shown in
Fig. 3. First, ‘7CH’ data is available at
the input of IC2 and the first flip-flop of
IC8. When a clock pulse is received, this

data (7CH) is
output by IC2
and the first
flip-flop of IC8
and new data
‘12H’ arrives
at the input
pin of IC2 and
the first flip-
flop of IC8.
The output
data of IC2
and the first

Fig. 7: Perforated board for
5×7 LEDs

55Electronics Projects vol. 26

SCroll.c
/************************************
SCROLLING MESSAGE DISPLAY
DEVELOPED BY : SURESH KUMAR
FINAL YEAR, IITT COLLEGE OF ENGINEER-

ING, PUNJAB
THANX TO ALL TEACHERS AND MY PAR-

ENTS
**********************************/
#include<stdio.h>
#include<dos.h>
#include<conio.h>
#include<process.h>
unsigned char str1[5],str2[13],str[5];
int DELAY=100;
void setcode();
void sendcode();
void getcode(char);
void main()
{
	 FILE *fp;
	 char line[150],ch;
	 clrscr();
	 fp=fopen(“message.txt”,”r”);
	 if(fp==NULL)
	 {
		 f p = f o p e n (“ m e s s a g e .

txt”,”w”);
		 if(fp==NULL)
		 {
			 printf(“\n\

nCAN’T CREATE MESSAGE.TXT CREATE A FILE
UNDER NAME MESSAGE.TXT YOURSELF”);
			 exit(0);
		 }
		 fputs(“ Welcome! You are

watching running led display... “,fp);
		 fclose(fp);
		 f p = f o p e n (“ m e s s a g e .

txt”,”r”);
		 if(fp==NULL)
		 {
			 p r i n t f (“ \

nCAN’T FIND OR OPEN \”message.txt\””);
			 exit(0);
		 }
	 }
	 clrscr();
	 startagain:
	 while(!kbhit())
	 {
		 ch=fgetc(fp);
		 if(ch==EOF)
		 {
			 rewind(fp);
			 continue;
		 }
		 printf(“\nSCROLLING

MESSAGE DISPLAY : Sending \’%c\’”,ch);
		 getcode(ch);
		 setcode();
		 sendcode();
	 }
	 ch=getch();
	 switch(ch)
	 {
		 case ‘i’:
		 case ‘I’:
		 if(DELAY>10)
		 {
			 DELAY-=5;
		 }
		 else
		 {

			 DELAY-=1;
		 }
		 if(DELAY<0)
		 {
			 DELAY=0;
		 }
		 printf(“\nSCROLLING

MESSAGE DISPLAY : Speed Increased”);
		 break;
		 case ‘d’:
		 case ‘D’:
		 DELAY+=10;
		 printf(“\nSCROLLING

MESSAGE DISPLAY : Speed Decreased”);
		 break;
		 case ‘r’:
		 case ‘R’:
		 rewind(fp);
		 printf(“\nSCROLLING

MESSAGE DISPLAY : Started from Begining”);
		 break;
		 case 27:
		 clrscr();
		 printf(“\nSCROLLING

MESSAGE DISPLAY : Exiting “);
		 fclose(fp);
		 delay(1000);
		 printf(“. “);
		 delay(200);
		 printf(“. “);
		 delay(200);
		 printf(“. “);
		 delay(200);
		 printf(“. “);
		 delay(200);
		 exit(0);
	 }
	 goto startagain;
}
void getcode(char ch)
{
	 switch(ch)
	 {
		 case ‘a’:
		 case ‘A’:
		 str1[0]=0x7c;str1[1]=0x12; st

r1[2]=0x11;str1[3]=0x12;str1[4]=0x7c;
		 break;
		 case ‘b’:
		 case ‘B’:
		 str1[0]=0x36;str1[1]=0x49; st

r1[2]=0x49;str1[3]=0x49;str1[4]=0x7F;
		 break;
		 case ‘c’:
		 case ‘C’:
		 str1[0]=0x22;str1[1]=0x41; st

r1[2]=0x41;str1[3]=0x41;str1[4]=0x3C;
		 break;
		 case ‘d’:
		 case ‘D’:
		 str1[0]=0x1C;str1[1]=0x22;s

tr1[2]=0x41; str1[3]=0x41;str1[4]=0x7F;
		 break;
		 case ‘e’:
		 case ‘E’:
		 str1[0]=0x41;str1[1]=0x41;st

r1[2]=0x49; str1[3]=0x49;str1[4]=0x7F;
		 break;
		 case ‘f’:
		 case ‘F’:
		 str1[0]=0x01;str1[1]=0x01;st

r1[2]=0x09; str1[3]=0x09;str1[4]=0x7F;
		 break;

		 case ‘g’:
		 case ‘G’:
		 str1[0]=0x3A;str1[1]=0x49;s

tr1[2]=0x41; str1[3]=0x41;str1[4]=0x3E;
		 break;
		 case ‘h’:
		 case ‘H’:
		 str1[0]=0x7F;str1[1]=0x08;st

r1[2]=0x08; str1[3]=0x08;str1[4]=0x7F;
		 break;
		 case ‘i’:
		 case ‘I’:
		 str1[0]=0x41;str1[1]=0x41;st

r1[2]=0x7F; str1[3]=0x41;str1[4]=0x41;
		 break;
		 case ‘j’:
		 case ‘J’:
		 str1[0]=0x7F;str1[1]=0x41;st

r1[2]=0x41; str1[3]=0x41;str1[4]=0x21;
		 break;
		 case ‘k’:
		 case ‘K’:
		 str1[0]=0x41;str1[1]=0x22;st

r1[2]=0x14; str1[3]=0x08;str1[4]=0x7F;
		 break;
		 case ‘l’:
		 case ‘L’:
		 str1[0]=0x40;str1[1]=0x40;st

r1[2]=0x40; str1[3]=0x40;str1[4]=0x7F;
		 break;
		 case ‘m’:
		 case ‘M’:
		 str1[0]=0x7F;str1[1]=0x02;st

r1[2]=0x04; str1[3]=0x02;str1[4]=0x7F;
		 break;
		 case ‘n’:
		 case ‘N’:
		 str1[0]=0x7F;str1[1]=0x08;st

r1[2]=0x04; str1[3]=0x02;str1[4]=0x7F;
		 break;
		 case ‘o’:
		 case ‘O’:
		 str1[0]=0x3E;str1[1]=0x41;st

r1[2]=0x41; str1[3]=0x41;str1[4]=0x3E;
		 break;
		 case ‘p’:
		 case ‘P’:
		 str1[0]=0x06;str1[1]=0x09; st

r1[2]=0x09;str1[3]=0x09;str1[4]=0x7F;
		 break;
		 case ‘q’:
		 case ‘Q’:
		 str1[0]=0x3E;str1[1]=0x61; st

r1[2]=0x51;str1[3]=0x41;str1[4]=0x3E;
		 break;
		 case ‘r’:
		 case ‘R’:
		 str1[0]=0x46;str1[1]=0x29; st

r1[2]=0x19;str1[3]=0x09;str1[4]=0x7F;
		 break;
		 case ‘s’:
		 case ‘S’:
		 str1[0]=0x32;str1[1]=0x49; st

r1[2]=0x49;str1[3]=0x49;str1[4]=0x26;
		 break;
		 case ‘t’:
		 case ‘T’:
		 str1[0]=0x01;str1[1]=0x01; st

r1[2]=0x7F;str1[3]=0x01;str1[4]=0x01;
		 break;
		 case ‘u’:
		 case ‘U’:
		 str1[0]=0x3F;str1[1]=0x40; st

flip-flop of IC8 becomes the input for
IC3 and the second flip-flop of IC8.
When the next clock pulse is received,
‘7CH’ data becomes available at the
output of IC3 and output of second
flip-flop of IC8, ‘12H’ is available at the
output of IC2 and the first flip-flop of
IC8 and new data ‘11H’ is available at
the input of IC2 and the first flip-flop
of IC8. This process continues until the
message completes.

;str1[3]=0x14;str1[4]=0x8;
break;
Save the file and compile the pro-

gram again. On executing the program,
you can watch ‘<’ being displayed on
the message display.

Other special characters can be
added in the same way.

Download source code: http://
www.efymag.com/admin/issuepdf/
PC%20Scroll%20Display.zip

Now let’s assume that you want to
display ‘<.’ For this, first draw this symbol
on the 5×7 matrix as shown in Fig. 4. As-
suming glowing LED as ‘1,’ convert the
binary column sequence into hexadeci-
mal for all the five columns as shown in
the figure. Finally, add the following lines
in the software program where the com-
ment “Add your codes here” appears:

Case ‘<’ :
str1[0]=0x00;str1[1]=0x41;str1[2]=0x22

56 Electronics projects Vol. 26

r1[2]=0x40;str1[3]=0x40;str1[4]=0x3F;
		 break;
		 case ‘v’:
		 case ‘V’:
		 str1[0]=0x1F;str1[1]=0x20;

str1[2]=0x40;str1[3]=0x20;str1[4]=0x1F;
		 break;
		 case ‘w’:
		 case ‘W’:
		 str1[0]=0x7F;str1[1]=0x20;

str1[2]=0x10;str1[3]=0x20;str1[4]=0x7F;
		 break;
		 case ‘x’:
		 case ‘X’:
		 str1[0]=0x63;str1[1]=0x14;

str1[2]=0x08;str1[3]=0x14;str1[4]=0x63;
		 break;
		 case ‘y’:
		 case ‘Y’:
		 str1[0]=0x03;str1[1]=0x04;

str1[2]=0x78;str1[3]=0x04;str1[4]=0x03;
		 break;
		 case ‘z’:
		 case ‘Z’:
		 str1[0]=0x03;str1[1]=0x04;

str1[2]=0x08;str1[3]=0x11;str1[4]=0x61;
		 break;
		 case ‘0’:
		 str1[0]=0x1C;str1[1]=0x22

;str1[2]=0x41; str1[3]=0x22;str1[4]=0x1C;
		 break;
		 case ‘1’:
		 str1[0]=0x40;str1[1]=0x40;

str1[2]=0x7F;str1[3]=0x42;str1[4]=0x44;
		 break;
		 case ‘2’:
		 str1[0]=0x46;str1[1]=0x49;

str1[2]=0x51;str1[3]=0x61;str1[4]=0x42;
		 break;
		 case ‘3’:

		 str1[0]=0x31;str1[1]=0x4B; st
r1[2]=0x45;str1[3]=0x49;str1[4]=0x21;
		 break;
		 case ‘4’:
		 str1[0]=0x10;str1[1]=0x7F; st

r1[2]=0x12;str1[3]=0x14;str1[4]=0x18;
		 break;
		 case ‘5’:
		 str1[0]=0x31;str1[1]=0x49; st

r1[2]=0x49;str1[3]=0x49;str1[4]=0x27;
		 break;
		 case ‘6’:
		 str1[0]=0x32;str1[1]=0x49; st

r1[2]=0x49;str1[3]=0x51;str1[4]=0x3A;
		 break;
		 case ‘7’:
		 str1[0]=0x07;str1[1]=0x79; st

r1[2]=0x01;str1[3]=0x01;str1[4]=0x01;
		 break;
		 case ‘8’:
		 str1[0]=0x36;str1[1]=0x49; st

r1[2]=0x49;str1[3]=0x49;str1[4]=0x36;
		 break;
		 case ‘9’:
		 str1[0]=0x3E;str1[1]=0x49; st

r1[2]=0x49;str1[3]=0x49;str1[4]=0x26;
		 break;
		 case ‘.’:
		 str1[0]=0x60;str1[1]=0x60; st

r1[2]=0x00;str1[3]=0x00;str1[4]=0x00;
		 break;
		 case ‘ ‘:
		 str1[0]=0x00;str1[1]=0x00; st

r1[2]=0x00;str1[3]=0x00;str1[4]=0x00;
		 break;
		 case ‘!’:
		 str1[0]=0x67;str1[1]=0x7F; st

r1[2]=0x00;str1[3]=0x00;str1[4]=0x00;
		 break;
		 case ‘-’:

		 str1[0]=0x08;str1[1]=0x08; st
r1[2]=0x08;str1[3]=0x08;str1[4]=0x08;
		 break;
		 case ‘+’:
		 str1[0]=0x08;str1[1]=0x08; st

r1[2]=0x3E;str1[3]=0x08;str1[4]=0x08;
		 break;
		 case ‘_’:
		 str1[0]=0x40;str1[1]=0x40;st

r1[2]=0x40; str1[3]=0x40;str1[4]=0x40;
		 break;
////// ADD YOUR CODES HERE////////
		 default:
		 str1[0]=0x0;str1[1]=0x0;str1

[2]=0x0; str1[3]=0x0;str1[4]=0x0;
		 break;
	 }
}
void setcode()
{
	 int i,k;
	 for(i=0,k=0;i<10;i+=2,k++)
	 {
		 str2[i]=str1[k];
		 str2[i+1]=str1[k]+128;
	 }
		 str2[i]=0;
		 str2[i+1]=128;
}
void sendcode()
{
	 int i;
	 for(i=0;i<12;i++)
	 {
		 outportb(0x0378,str2[i]);
		 delay(DELAY);
	 }
}



