
learn design share

54 January & February 2016 www.elektormagazine.com

By Alex Robertson (Scotland)

In 2015 I entered an “Internet of Things”
design contest sponsored by LPRS, a UK
manufacturer and supplier of low-power radio
solutions, and RS Components’ DesignShare.
The prize: the winning idea taken all the
way from concept through to design and
manufacture, supported by LPRS and made
a reality by Elektor Magazine. There were
many submissions so I was delighted to
learn I had the winning entry: eRIC Nitro –
a wireless-enabled Arduino board.

My entry to the LPRS Design Contest [1]
is based on experience gathered from my
home electronics projects. I enjoy the

practical aspects of taking my ideas and
making them real with a physical board.
However, instead of PCBs, these are built

using proto boards, point to point wiring
and a soldering iron. It can be a lot of
fun, but sometimes building a board this
way is a time consuming step I could do
without. I’m sure other project makers
have the same feeling and prefer spend-
ing their time on testing out their ideas.
Radio communication fascinates me and
I have patiently hand built many wireless
sensor projects.

There is something magical in being able
to transmit and receive data through the
air (“aether”) without wires and the LPRS
eRIC module [2] makes it very easy. For
me, having a pre-assembled wireless
Arduino board ticks all my design boxes.
It reduces the time to test out an idea
and for IoT projects it’s a perfect fit. The
key features of the eRIC Nitro board are
given in the inset.

eRIC Nitro

eRIC Nitro Board Key Features
•	 LPRS eRIC module with a subset of eRIC signals brought out to user accessible

pads on the PCB
•	 PCB form factor similar to Arduino Pro Mini
•	 Small size: 2.5 x 5.5 cm
•	ATmega328 processor with Arduino bootloader with direct serial connection to

eRIC module
•	 8-MHz operation
•	On-board 3.3-V regulator providing power to eRIC module and ATmega328

device
•	Header for FTDI friend connector, to allow ATmega328 programming from

Arduino IDE and also to provide serial communication interface
•	Quickly deployable as a battery-powered low-power programmable RF node
•	 Total current consumption in low power mode <100 µA
•	Open source, open hardware design

learn design share labs project reader’s project

www.elektormagazine.com January & February 2016 55

the eRIC into bootloader mode to allow
the MSP430 firmware to be replaced.

Circuit description
Arduino boards are easily programma-
ble and have the major benefits of a
free development environment (IDE), a
huge development community and a vast
library of user contributed open source
software. If you want a software library
for a sensor or a peripheral chip, it prob-
ably already exists for the Arduino. So
basing the eRIC Nitro design on Arduino
hardware was an easy choice.
The Arduino section of the eRIC Nitro is
derived from the open-source Arduino Pro

Mini. There are a few changes though.
Looking at the schematic in Figure 2,
you’ll see the addition of inductive filter
L1 at the ATmega328 (IC1) power sup-
ply, recommended by its manufacturer
to improve the performance of the ana-
log-to-digital converter. Another change
is the clock source. The original 16-MHz
resonator has been replaced by an 8-MHz
version (X1). This keeps the MCU’s clock
speed within the datasheet specification
for a 3.3-V supply.
It was a design decision to keep the
pinout of the board as close as possible
to the Pro Mini original. With so many
peripheral ICs available with an I²C con-
nection, it makes sense to bring Arduino’s
I²C pins A4 and A5 out on connector K2,
replacing the A2 and A3 of the original
Pro Mini design. The eRIC module (MOD1)
reset pin (RST) is also made user acces-

Meet eRIC, the easy radio
transceiver module
The eRIC radio transceiver module is
the jewel in the eRIC Nitro design. eRIC
stands for easy Radio Intelligent Con-
troller and is a 24-pin module (Fig-
ure 1) containing a Texas Instruments
CC430F5137 IC, a mixed-signal System-
on-Chip (SoC) that combines an MSP430
microcontroller core with RF circuitry.
The eRIC modules are licence-exempt
ISM band radios operating in the 433-
MHz, 868-MHz or 915-MHz ISM frequency
bands. Two versions of the module are
available: eRIC4, operating in the 433-
MHz band, and eRIC9 for both the 868-
MHz (UK and Europe) and 915-MHz (USA)
bands. The modules used in this proj-
ect come configured as standard ‘serial
bridge’ modules. Send serial data into
the eRIC SDI (Serial Data In) pin and

the module transmits it out on
its RF interface. Data received
on the module’s RF interface
gets transmitted on its SDO pin
(Serial Data Out). By connecting

a simple wire antenna, a power
supply decoupling capacitor and
power to a standalone module you
can give any project the ability
to communicate wirelessly. Any
microcontroller with a hardware
or software UART can easily com-
municate with eRIC.
The capabilities of the module
don’t end at being a serial bridge.
What makes eRIC a rock star of

the transceiver world is that the existing
firmware in the device can be replaced
with user MSP430 code (for free!). If
you want to get into the internals of the
transceiver and replace the firmware,
you will need Texas Instruments Code
Composer Studio (CCS) to compile your
MSP430 application. On the LPRS website
a demo CCS project is provided to get you
started. The demo code is written in C.

The benefits of going down this road is
that it can reduce the component count
in your project since the GPIO pins on the
transceiver are fully programmable, even
supporting A-to-D functionality. LPRS also
supply a PC utility to allow you to flash
your code into the module. We won’t
delve further into programming the eRIC
but suffice to say, the eRIC Nitro board
has all of the connections needed to put

in collaboration with

Powerful
low-power
radio

Figure 1. X-ray of eRIC revealing its guts. (Source: LPRS)

learn design share

56 January & February 2016 www.elektormagazine.com

ply voltage VCC of 3.3 V. IC2 is rated at
150 mA at 3.3 V output. However, the
output current capacity is directly related
to the input voltage VIN on connectors K2
and K4. If you need this level of current
then please refer to the MIC5205 data-
sheet for more information on calculat-
ing the maximum output current for any
given VIN since a high VIN voltage and a
high load current on the IC2 OUT pin
could end up with IC2 overheating pos-
sibly causing permanent damage to IC2
and to the eRIC Nitro board.
The eRIC Nitro does not have the ‘power
present’ LED of the Pro Mini. This was
removed to reduce the board current con-
sumption — an important requirement
for low-power environments. It’s always
convenient to have an LED under pro-
gram control and on the eRIC Nitro it’s
connected to pin D9 on connector K1.
Switch S2 and the passive components
D1, D2, R5, R6 and R7 all play important
roles in connecting the eRIC SDI and SDO
pins to the MCU. These components per-
mit SDI and SDO to be connected to the
MCU hardware UART RXD and TXD pins,
or software UART using pins D2 and D3
or to bypass the MCU completely while
remaining accessible via the TXO and RXI
pins of connector K4.
R3 and JP1 are only needed when an
eRIC9 module is used. JP1 is needed to
select the module’s frequency (open for
868 MHz, closed for 951 MHz). R3 is not
really needed as the module includes a
pull-up resistor; it is on the board just
in case.

Sending data using eRIC
Under the bonnet of the eRIC module is
where data received on SDI gets encoded
before transmitting the SDI data over the
RF interface. The eRIC firmware adds all
necessary preamble, message length and
message CRC information. Similarly, the
firmware strips the same preamble, mes-
sage length and CRC encoding data from
RF data received by the module before
transmitting it out serially on SDO.
The default serial SDI/SDO pin data
rate is 19,200 baud, with an over-the-
air (OTA) data rate of 38,400 baud. The
SDI/SDO pin data format for one char-
acter is one start bit, eight data bits, no
parity and one stop bit (19200n81). Data
received on the SDI pin is automatically
put into an internal data buffer (maxi-
mum 250 bytes). The module transmits
the buffer contents over the RF inter-

the user more control of the eRIC mod-
ule. A user program can reset the eRIC
module without having to reset the MCU.
Voltage regulator IC2 provides a sup-

sible and is brought out to pins on con-
nectors K1 and K5 to replace one of the
original Pro Mini RESET pins. Having the
MCU and eRIC reset pins separate gives

X1

8MHz

C1

100n

VCC

C3

100n

L1

10uH
C4

100n

R2

10
k

S1

Reset PB3(MOSI/OC2)

PC4(ADC4/SDA)
PC5(ADC5/SCL)

ATMEGA328P-AU

PB2(SS/OC1B)

PD4(XCK/T0)

PC6(RESET)

PC2(ADC2)
PC3(ADC3)

PD2(INT0)
PD3(INT1)

PD6(AIN0)
PD7(AIN1)

PB1(OC1A)

PB4(MISO)

PC0(ADC0)
PC1(ADC1)

PB0(ICP)

PD0(RXD)
PD1(TXD)

PB5(SCK)

PD5(T1)

XTAL1 XTAL2

AREF

IC1

AVCC

ADC6
ADC7

AGNDGNDGND

VCC VCC
18

20

21

29 12
13
14
15
16
17

23
24
25
26
27
28
19
22

30
31
32

10
11

583 7

4 6

1
2
9

C2

100n

DTR

RESET

RXD
TXD
D2
D3
D4
D5
D6
D7

D8
D9

D10
MOSI
MISO

SCK

A0
A1
A2
A3
A4
A5
A6
A7

TXD
RXD
RST

D2
D3
D4
D5
D6
D7
D8
D9 D10

MOSI
MISO
SCK
A0
A1
A4
A5

RESET

VIN

VCC

A6
A7

K1

10
11
12

1
2
3
4
5
6
7
8
9

K2

10
11
12

1
2
3
4
5
6
7
8
9

K3

1
2

K5

1
2
3
4P8

RST
P11
P12

R1

1k

LED1

D9

S2.B

6

4

5CB

S2.A

3

1

2CA

R5
100R

R6
100R

D2

RB751

D3

RB751

D1

RB751

R7

10
k

VCC

TXO

D2

RXD

D3

TXD

SDO

SDI

1

X

1

X

150308 - 11

MIC5205-3.3
IC2

BPEN

1 5

2

43

C6

100n

C7

10u
16V

C8

10u
16V

VCC

K4

VIN

TXO
TXD
DTR

GND
CTS
VCC
TXO
RXI
DTR

VIN

Radio
Transceiver

MOD1

eRIC
BUSY

AN
T

P19

GN
D

P2
2

P2
1

P2
0

SDO
SDI

VCC
GND

P18
P17
P16
P15

P13

RS
T

P1
0

P1
1

P1
2

CD

P8

24

19

23 22 21 20

HR

18
17
16
15

FS 14
13

US: CLOSE
UE: OPEN

10 11 128

1
2
3
4
5
6
7

9

R3

NL

VCC

C5

100n

JP11

VCC

P8 RS
T

P1
1

P1
2

A3
D4
SDO
SDI
D5

ANT

K6
R4

10
k

A2

FTDI Basic

Figure 2. Schematic of the eRIC Nitro board. eRIC sits in the lower-left corner, the rest is Nitro.

Figure 3. Serial bridge system overview. (Source: LPRS)

learn design share labs project reader’s project

www.elektormagazine.com January & February 2016 57

Keep in mind the legal requirements of
using an ISM radio, both in terms of trans-
mit power and transmit duty cycle [3].

Programming
Programming the eRIC Nitro couldn’t be
easier as the good folks at Elektor have
pre-installed an Arduino bootloader into
the board’s ATmega328 chip. This is a
derivative of the standard Arduino Uno
Optiboot bootloader, conveniently flashing
LED1 during programming. The board can
be programmed using the Arduino IDE
(version 1.0.6 or greater), and selecting
board “Arduino Pro or Pro Mini (3.3 V,
8 MHz)” or “Arduino Pro or Pro Mini” plus
a processor “ATmega328 (3.3 V, 8 MHz)”
(Figure 5, this depends on the version
of the IDE). An Arduino board file [4] is
also available for extra ease of use. Add
this into the IDE (v1.6.6 and up) and the
eRIC Nitro appears in the list of supported
boards (Figure 6).
Just as with Arduino Pro Mini boards,
header K4 has the same pinout as the
6-pin end connector of FTDI basic break-
out boards and FTDI TTL-232R cables.
The FTDI chip converts USB signals to
serial signals and allows programming the
ATmega328 from the Arduino IDE. The

•	an SMA antenna on edge connector
K6;

•	an external antenna connected to the
eRIC module UFL antenna connector;

•	a minimum cost ¼-wavelength wire
antenna.

When using a wire antenna, solder the
relevant length of (stiff) wire to the ANT
pad on the PCB (approximately 171 mm
for the eRIC4 and 82 mm for the eRIC9
operating at 868 MHz). It goes without
saying that when using a wire antenna,
there is no need to have the SMA connec-
tor on the board and the SMA position on
the PCB can be left unpopulated. If using
the eRIC9, leave jumper JP1 open when
operating at 868 MHz. JP1 needs to be
closed to TX/RX at 915 MHz.
The transmit/receive range depends on
many factors. These include the radio
power (max 10 mW for eRIC4) and sen-
sitivity, obstacles in the path of the radio
signal, antenna type and also radio fre-
quency. SMA and UFL antennas should
give better performance than a wire
antenna, but a wire antenna will still give
good results. The physics of path losses
say that the range at 433 MHz exceeds
that at either 868 MHz or 915 MHz.

face (emptying the buffer in the process)
when it detects no data has was received
on the SDI pin for a period equal to two
characters (Figures 3 and 4).
Sending and receiving data is easily done
with no need for a hardware handshake
between eRIC and the MCU. Receive and
transmit using the SDI and SDO pins is
easily achievable just using software
delays (for the two-character transmit
delay on the SDI pin). If a hardware
handshake is needed then the eRIC can
support this using Clear to Send (CTS)
and Request to Send (RTS) signals on
the respective BUSY and HOST READY
(HR) pins. The BUSY output pin goes low
when the module is ready to receive data
on the SDI pin. It will not send any RF
data it has received if the HOST READY
input pin is driven high by the MCU. By
default the eRIC firmware disables the
handshaking functions BUSY and HOST
READY. If a user wants to enable the
handshaking signals they can send the
string data ER_CMD#A51 to the module.
It will trap this data string, recognizing
it as a valid command and enable the
hardware handshake signals. BUSY and
HOST READY are connected to Arduino’s
D4 and D5 pins. If hardware handshaking
is not required then D4 and D5 are free
for Arduino program use.

eRIC modules have many neat features,
one being the ability to detect if a radio
frequency band is currently occupied by
another source transmitting data. The
module has a Carrier Detect (CD) pin
which swings High to flag an RF carrier
detected within the radio receiver band-
width. In the eRIC Nitro the CD pin is
connected to Arduino’s A3 pin. eRIC com-
mand ER_CMD#T8 is also useful for a sim-
ilar purpose as it returns the Received
Signal Strength Indication (RSSI) of the
last packet received.
The eRIC module firmware permits chang-
ing many of the radio transceiver parame-
ters such as transmit power, receive sen-
sitivity, low power modes, SDI/SDO baud
rate, and radio transmit and receive fre-
quency. The module’s datasheet describes
these in more detail.

Antenna connection
and radio range
As might be expected, the eRIC Nitro
needs an antenna to transmit data using
the RF interface. There are three antenna
possibilities:

Figure 4. Serial bridge timing diagram. (Source: LPRS).

Figure 5. Choosing the right board in the Arduino
IDE. It may look slightly different depending on
the version of the IDE.

Figure 6 – It is even easier if you have the
Elektor.Labs Arduino board package [4] installed.

learn design share

58 January & February 2016 www.elektormagazine.com

be ordered separately because you must
choose the right one. Anyone with lesser
soldering skills should be able to mount
the radio modules manually.

Design, Make, Use
The eRIC Nitro board is a fantastic plat-
form for Arduino projects requiring wire-
less connectivity. The Internet is full of
sensor, actuator and Wi-Fi breakout
boards just waiting to be connected to
this board. And if you want to progress
further to programming in the native
environment of the eRIC module, this
is supported too. What project will you
create?

(150308-I)

USB-to-serial function is also useful when
you need to communicate to the eRIC
Nitro from a PC. Always use a version
of the FTDI chip having 3.3-V TTL signal
levels and not the 5-V TTL version. The
Nitro board will be damaged if you don’t
use the 3.3-V version. And always make
sure you are connecting the FTDI pins to
the matching pins of K4. The green and
black wires match up with the “G” and
“B” text on the Nitro PCB. Get this wrong
and the Nitro board will be damaged.
When using the Arduino IDE to program
the ATmega328, put switch S2 in the
“upper” position (switch button closest
to connector K1). While in this position
eRIC’s SDI-SDO pins are connected Ardui-
no’s D3-D2 pins. When switch S2 is in the
‘lower’ position (switch button closest to
connector K2), eRIC’s SDI-SDO pins are
linked to Arduino’s UART TXD-RXD pins
and will interfere with the programming
process.
When using the easyRadio Companion
PC utility (available from the LPRS web-
site) to talk directly to the eRIC via K4
(bypassing the ATmega328), put S2 in
the ‘middle’ position. Before doing so, you
maut force the ATmega328 into reset by
connecting K2 pin /RESET to 0 V (with a
jumper for instance).

Example software
Elektor.Labs have kindly released exam-
ple Arduino hardware and software files
[5] to get you started with the eRIC Nitro
board. Software example eRIC_blink.ino
is a good starting point to get you up and
running with the Nitro board. With two
boards you can begin two-way commu-
nication and example eRIC_bridge.ino
is a great template for your future eRIC
projects. Expect to see further software
examples appear in the future.

You 2 can build your own
This project is open hardware and soft-
ware and all the files needed to build and
program your own eRIC Nitro board can
be downloaded from GitHub [5]. The PCB
design files are available as DesignSpark
PCB and Eagle files. Note that assem-
bling the board can be challenging as
some components are rather hard to sol-
der manually. The resonator is one of
those; the Schottky diodes are so small
that it’s hard to see their pads. For this
reason pre-assembled boards can be
bought from the Elektor Store [6]. The
eRIC module is not mounted and must

Component List
Resistors
All 5%, 50V, 0.1W, 0603
R5,R6 = 100Ω
R1 = 1kΩ
R2,R4,R7 = 10kΩ
R3 = 10kΩ

Capacitors
C1–C6 = 100nF, 0603
C7,C8 = 10µF 16V, tantalum

Inductor
L1 = 10µH, 0603

Semiconductors
IC1 = ATmega328P-AU
IC2 = MIC5205-3.3
D1,D2,D3 = RB751
LED1 = LED, green, 0603

Misc.
X1 = 8MHz resonator, SMT
K1,K2 = pinheader, 1x12, 0.1’’ pitch
K3 = pinheader, 1x2, 0.1’’ pitch
JP1 = pinheader, 1x2, 0.1’’ pitch w. jumper
K5 = pinheader, 1x4, 0.1’’ pitch
K4 = pinheader 1x6, 0.1’’ pitch
K6 = SMA edge connector
S1 = tactile switch
S2 = DP3T slide switch
MOD1 = eRIC4/eRIC9 SoC Radio Transceiver
PCB 150308-1 v1.2

Web Links

[1] www.lprs.co.uk/smart-eric-iot-competition/

[2] www.lprs.co.uk/easy-radio/eric/

[3] www.ti.com/lit/an/swra048/swra048.pdf

[4] https://github.com/ElektorLabs/Arduino

[5] https://github.com/ElektorLabs/150308-eRIC-Nitro

[6] www.elektor.com/150308

[7] www.elektor-labs.com/eric-nitro

