
100 March & April 2017 www.elektormagazine.com

We commence with the temperature sensor 18B20 Temp in the
kit, which is available from the Elektor Store [1]. The DS18B20
under discussion may look like a regular transistor in a TO92
package but it’s actually a complex IC embracing a tempera-
ture sensor and a special interface. The 1-Wire Bus was devel-
oped by the Dallas Semiconductor Corporation. One or more
sensors can be handled using a single wire, if you discount the
GND line. As this wire carries only data, it can also be used to

power the IC. In the main, however, people use the third (VDD)
connection of the DS18B20 for supplying power, which then
adds up to three wires in total. On the sensor PCB there is also
an LED plus its dropper resistor, connected to the data line.

Arduino software for the 18B20
There are two Libraries that we need to load into the Arduino
IDE: OneWire and DallasTemperature. Both are supplied on

Sensors Make Sense (3)
For Arduino and more

By Burkhard Kainka (Germany)

Ever since the earliest days of telegraphy, electrical communication has been possible over a single wire.
Today the 1-Wire Bus and similar protocols function using just one conductor, without the need for an
additional clock line. Infrared (IR) remote controls operate on similar principles. In this session we get to
grips with temperature and humidity sensors among other things, and in particular with the IR Transmitter
and Receiver in Elektor’s 35 Sensors Kit.

PROJECTHOMELAB

18B20

VDD

GND

DQ

A2

+5V

GND

Y

R

G

4k7

18B20 Temp

Figure 1. 18B20 temperature sensor
connections.

Figure 2. Temperature output in the serial
monitor.

Figure 3. Temperature curve.

www.elektormagazine.com March & April 2017 101

programming of your own. Of course this takes some time
but it does also open up some interesting opportunities. You
can then make use of some special features of the sensor, for
instance for altering the resolution or for reading out the unique
ID number included in every IC.

The Bascom sample code (Listing 2) shows how we read out
temperatures. Two commands need to be sent, (Skip ROM,
&HCC and Convert T, &H44). Following a delay while the mea-
surement itself is taken, we send the command Read Scratch-

the Sensor Kit CD and they have to be copied into the Libraries
folder in the Arduino Sketchbook directory. In each case you
will find a header file *.h and a C++ file *.cpp. It’s interesting
to look closer at these files. If you manage to get all the way
to the end, leaving nothing at all unread, that’s pretty good
going! After that, all you need do is integrate the header files
into your own program and then call up a few functions. Thanks
to Arduino, all this is straightforward. The program in Listing 1
shows how to interrogate and retrieve a temperature pure and
simple, repeated every 500 ms. The data line is connected to
A2 (= PC2) (Figure 1). All the code mentioned in this article
can of course be downloaded from the Elektor website [4].
Not only does the thermometer have a serial output but it can
also indicate the temperature on the LCD screen, if you are
using the Elektor Extension Shield [2] [5]. And because there
is space on the second line of the display, we have additionally
programmed a minimum/maximum thermometer.

The temperature is indicated as a real number to two decimal
places. The actual resolution amounts to 0.06 degrees C per
step. The absolute accuracy is given within 0.5 degrees. On
the serial monitor (Figure 2) you can read the data. A touch
on the sensor will demonstrate a change in temperature.
The serial plotter indicates changes in temperature over time
(Figure 3). In the plot shown the sensor was touched (warmed)
twice by finger. This shows clearly the differing time constants
for heating and cooling. Also interesting is how the finger was
visibly warmer on the second touch. Something must have
caused the rise in temperature during the intervening time.
Thanks to the high resolution of the sensor even small varia-
tions can be detected.

18B20 in Bascom
Bascom supports the 1-Wire Bus, although the Bus alone does
not provide a complete solution for using the 18B20. So you
need to dive a little deeper (into the data sheet) and do some

Listing 1. Temperature measurement using the
DS18B20.

#include <OneWire.h>
#include <DallasTemperature.h>
#include <LiquidCrystal.h>
#define ONE_WIRE_BUS A2
OneWire oneWire(ONE_WIRE_BUS);
DallasTemperature sensors(&oneWire);

float temp;
int minTemp;
int maxTemp;
LiquidCrystal lcd(2,3,4,5,6,7);

void setup(void)
{
 Serial.begin(9600);
 sensors.begin();
 lcd.begin(16, 2);
 minTemp = 100;

 maxTemp = -100;
}

void loop(void)
{
 sensors.requestTemperatures();
 temp = sensors.getTempCByIndex(0);
 Serial.println(temp);
 lcd.setCursor(0, 0);
 lcd.print(temp);
 lcd.print (" C ");
 if (temp < minTemp) minTemp = temp;
 if (temp > maxTemp) maxTemp = temp;
 lcd.setCursor(0, 1);
 lcd.print(minTemp);
 lcd.setCursor(5, 1);
 lcd.print(maxTemp);
 delay (500);
}

The 1-Wire protocol

With the 1-Wire Bus everything is channeled down the
single wire DQ. However, we also have GND and VCC wires.
In standby mode the data line DQ is taken High with a pull-
up resistor. The Master (Controller) can now send a Reset
pulse for initiating communication with Slaves, in order to
then send commands or receive data. Both partners can
load data onto the Bus. A 0 Bit is represented by a 15 µs
long Low pulse and a subsequent, 45 µs long High state. In
contrast a 1 Bit is symbolized by a 60 µs long Low pulse.
Between individual Bits there is a resting state, during
which the data line is taken High by the pull-up.
The Master always sends a Reset followed by one or more
commands. A sensor chip then responds with the wanted
data. If you study the data sheet for the chips in detail,
you will find information there not only on the general Bus
protocol but also countless commands and the makeup of
the data structure that is repeated back. Matters become
even more complex, because multiple Slaves can be
attached to the same Bus. You can hardly imagine how
much work it would take to program all of this yourself.
Thank goodness you don’t have to reinvent the wheel every
time and can refer to ready-made code almost always.

102 March & April 2017 www.elektormagazine.com

pulse from the Master (controlling device) lasting at least 18
ms. After this a total of 40 Bits are read out, which the Master
requests each time by means of an 80 µs long Low pulse. The
sensor responds with High pulses, in which a period lasting
28 µs maximum stands for a zero and a period of 70 µs for
a one. The 40 Bits then contain one High Byte and one Low
Byte for the humidity and the temperature plus an additional
parity Byte for checking correct transfer of the data. With the
DHT11 the Low Bytes are always set to zero, meaning that no
post-decimal point figures are transferred. However, there is
also a DHT22 device using the same protocol, which does indeed
handle the decimal places in addition. Consequently both types
of sensor can be interrogated using the same software Library.
Once again we are fortunate that someone has already taken
the trouble to re-format the complicated protocol into an Arduino
Library. Using this is quite simple, once you have copied the
Library directory DHT from the CD into the Arduino Library
folder. The sample code (Listing 3) indicates how the two

pad (&HBE) and then read out the two Bytes. From these the
software calculates a 16-Bit number and the temperature (in
steps of .0625 degrees). That’s pretty clever and even better,
the program is only slightly longer than the Arduino version.
Once again we have the bonus of a minimum/maximum ther-
mometer with LCD readout.

Temperature and humidity using the DHT11
At first glance the combined humidity and temperature sensor
DHT11 looks like a straightforward resistive humidity sensor.
This impression is reinforced when you see that an analog Pin
is recommended (Figure 4). In reality, however, the insignif-
icant-looking exterior conceals a complex sensor with a dig-
ital interface.

The Chinese company Aosong has come up here with a scheme
that (only at first sight) brings to mind the 1-Wire Bus of Dal-
las Semiconductor. Each measurement is initiated by a Low

Listing 2. Temperature measurement in Bascom
(excerpt).

'DS18B20LCD AD2, PORTC.2
...
Do
 1wreset
 1wwrite &HCC
 1wwrite &H44
 Waitms 800
 1wreset
 1wwrite &HCC
 1wwrite &HBE
 Dat(1) = 1wread(2)
 1wreset
 Temp = 256 * Dat(2)
 Temp = Temp + Dat(1)

 Temp = Temp * 0.0625
 Print Temp
 Tempint = Round(temp)
 If Tempint > Maxtemp Then Maxtemp = Tempint
 If Tempint < Mintemp Then Mintemp = Tempint
 Locate 1 , 1
 Lcd Temp ; " C "
 Locate 2 , 1
 Lcd Mintemp
 Locate 2 , 5
 Lcd Maxtemp
 Waitms 200
Loop

End

Listing 3. DHT11 in Arduino-C.

//DHT11LCD, pin AD2

#include <dht.h>
#define dht_apin A2
#include <LiquidCrystal.h>
LiquidCrystal lcd(2,3,4,5,6,7);
float temperature;
float humidity;

dht DHT;

void setup(){
 Serial.begin(9600);
 delay(500);
 delay(1000);
 lcd.begin(16, 2);
}

void loop(){
 DHT.read11(dht_apin);
 humidity = DHT.humidity;
 temperature = DHT.temperature;
 Serial.print("Humidity = ");
 Serial.print(DHT.humidity);
 Serial.println(" % ");
 Serial.print("Temperature = ");
 Serial.print(temperature);
 Serial.println(" C ");
 lcd.setCursor(0, 0);
 lcd.print(temperature);
 lcd.print (" C ");
 lcd.setCursor(0, 1);
 lcd.print(humidity);
 lcd.print (" % ");
 delay(2000);
}

www.elektormagazine.com March & April 2017 103

the infrared transmit diode is modulated with a frequency
between 30 and 40 kHz. This signal is then pulsed (in one of
a number of methods) so as to transmit individual packets of
data. An integrated infrared receiver detects the signals with
a photo diode, amplifies and filters them and demodulates
them back into a digital signal. By design the internal filters
are dimensioned for specific frequencies in the range 30 to
40 kHz, although the bandwidth is sufficient to also receive
‘off-frequency’ signals at shorter ranges.

You can also use an IR zapper for other, more general, remote
control or switching tasks. The Sensor Kit includes an IR trans-
mit diode or emitter (IR emission in the diagram) and an inte-
grated IR Receiver (Figure 6). In conjunction with an Arduino
you have the choice of receiving or transmitting IR signals (or
both!). Here we will demonstrate a program that can do both.
Two buttons are used to send commands that are evaluated in
the receiver in order to switch an output. The same assignment
is performed both in Bascom and in Arduino-C. Both programs
are sufficiently compatible to the extent that that the Bascom
controller can tell the Arduino-programmed Uno what is to be
switched and vice versa.

measured values are interrogated and can be displayed on
the LCD screen. Once again we select Pin AD2 for connecting
the data line.
On the datasheet the absolute accuracy for temperature mea-
surements is stated modestly as within 2 degrees, that for air
humidity as within 5 %. Ambient humidity is difficult to judge
because all run-of-the-mill moisture meters are fairly impre-
cise. However, for temperature at least, the results measured
on our sample device seemed really good. A digital thermom-
eter that was to hand indicated 23.8 °C, the DHT11 showed
24 °C, and the DS18B20 read 23.37 °C, in each case leaving
enough time for the sensor to settle properly.

DHT11 and Bascom
Many ready-to-use commands and functions exist in Bascom
of course but the DHT11 is not supported directly as such.
Consequently for most topics your most profitable approach
is to search the Net to see if someone else has tackled them
already. On this occasion our search delivered positive results
in the Bascom Forum, where a user by the name of Grütze
had written a program called DHT11LCD.bas that does exactly
what we want. The code is easy to read and reflects more or
less exactly what is said in the data sheet. Only minor adjust-
ments are needed for using it with the Extension Shield and
enabling the sensor to work using Pin AD2. Beyond this, we
also incorporated a serial output, initially only for the humidity
data, as it was intended that these would be mapped out using
the serial plotter from the Arduino IDE (Figure 5).
The significant activity takes place in the function Get_dht11().
This is where we carry out exactly the same processes that
exist in the corresponding Library for the Arduino. In this way
we can create a complete miniature weather station equally
well using Bascom (Listing 4).

Infrared remote control
We are all familiar with infrared remote controls or ‘zappers’
for TVs and other home entertainment equipment. Numerous
different manufacturers and protocols exist that are not com-
patible with one another, meaning that a remote control hand-
set must be a correct match for the equipment it commands.
One feature common to all designs is that the signal sent by

+5V

G10
k

DHT11

GND

VDD

NC

D

GND

A2

Temp and Humidity

IR

DQ

VDD

GND

A2

+5V

GND

Y

R

G

4k7

IR Receiver

IR Emission

–

SIR

8 (Bascom), 2 (Arduino)

9 (Bascom), 3 (Arduino)

Figure 4. Temperature and humidity sensor
DHT11 connections.

Figure 5. Measuring ambient humidity by
finger touch.

Figure 6. IR receiver and transmitter.

Listing 4. Using the DHT11 in Bascom (excerpt).

'DHT11LCD an AD2, PORTC.2
...
Do
 If Get_dht11() = 1 Then
 Print Humidity
 Locate 1 , 1
 Lcd "H: " ; Humidity ; " % "
 Locate 2 , 1
 Lcd "T: " ; Temperature ; " C "
 End If
 Waitms 1000
Loop

End

104 March & April 2017 www.elektormagazine.com

on the remote control is transmitted. This switches on the out-
put at the receiver, making LED2 come on. With button S2 you
send a zero and switch off the output at the receiver once more.

Arduino and IR
For programming in Arduino-C we need to install the IRremote
Library (Listing 6). This makes use of Timer2 and its output
OC2B (PD3, Arduino Pin 3) for generating pulses applied to
the IR LED. This is also the E wire of the LCD screen on the
Extension Shield. That unfortunately means the program can-
not interact simultaneously with the LCD. However, that’s not
totally bad news, as we still have the serial outputs for view-
ing the received data.
The input is a matter of choice and is assigned here to A2 once
more. Programming an input pull-up is overwritten by the
Library, rendering this ineffective. But it’s not even necessary,
as reception does not block the program even when an open
input is in the Low state. Our goal remains achievable, to use
a program without modification or reconfiguration for a choice
of receiving only, transmitting only or handling both tasks.

The crucial advantage of the IRremote Library is that it can
‘speak’ not only RC-5 but also a multiplicity of other standards.
Most of us have a whole collection of disparate remote controls
at home. If so, it makes good sense to point each of these once
at the IR Receiver. You will then get a report of the standard
employed and the data received. RC-5 is shown as Type 3. If
you press several times on button 2 of an RC-5-compatible
remote control, the following messages appear:

3
382
3
B82

The data is output as 12-Bit numbers. The lower 5 Bits denote
the key code. Next comes the 5-Bit device address, in this case
the address 14 for a DVBT receiver. The highest value Bit is the

A standard frequently used for IR remote controls is RC-5,
developed by Philips (see boxout panel). Simple commands
for this are provided in Bascom, making decoding zappers a
simple task. Listing 5 provides a simple RC-5 receiver and
transmitter in Bascom. All received data is displayed on the LCD
screen. The command is also sent over the serial interface. At
the same time a check is made for any output to switch to Port
B. Given that LED2 is available at B.2 on the Extension Shield,
we have designed the code to illuminate this with button 2 on
the zappers and switch it off with button 0.

The RC-5 receiver can be connected to any input Pin you choose.
So we have again deployed input PC3 (AD3) for this. For the
command Getrc5 Bascom uses the Timer0 Interrupt in the
background, which you must enable globally. In addition we
have switched in the internal pull-up resistor for input PC3. It
is then possible to use the controller for transmitting (only)
without an IR receiver connected. Had we not done this, an
open high-impedance input without a pull-up might otherwise
assume a Low state and cause the program to hang.

For the transmit output (command Sendrc5 in Bascom) we
normally use PB1 (Arduino Pin 9), because the output OC1A
of Timer 1 is connected to this Pin, used for generating the
36 kHz transmit signal (warning: in the Arduino-C++ soft-
ware a different output is used for this task, meaning that on
this occasion we cannot keep the same hook-up allocations).
In Bascom the standby state of this Portpin must be defined
in advance using a Port command; here it needs to be Low
during inactive intervals. For each pulse packet the software
then switches over from the Port to the timer output. Because
the IR diode has no series resistor, it makes sense to switch
this to a different output Port, in order to use the two internal
resistors for current limiting. Here we selected PB0, which is also
switched Low as an output. In that way we still have four out-
puts on Port B as potential switching outputs for received data.
In transmit mode two commands are supported. If you press
button S1 on the Extension Shield, then the code for button 2

The RC-5 protocol

Infrared remote controls for TV receivers, video recorders and
other home entertainment devices operate in part using the
RC-5 standard defined by Philips. This employs modulated
optical signals in the range 30 kHz to around 40 kHz. The
remote control sends individual bursts (packets of data
pulses) 0.888 ms or 1.776 ms in length. At a modulation

frequency of 36 kHz a short burst contains 32 individual
pulses and a long one 64. The complete data packet lasts
about 25 ms and is repeated every 100 ms for as long as a
button is pressed.
The protocol employs a bi-phase signal. A Bit has a length of
1.776 ms. If the 36 kHz pulse lies in the first half of this time

period, it represents a logical Zero; a logical One is signaled
by a pulse in the second half. The signal is introduced every
time with a start sequence that never changes. There then
follow three data fields:

• The Control or Check Bit (Ctl) alternates between 0 and
1 with every key press. In this way the receiver can
differentiate whether a key has been pressed once for a
long time or several times briefly.

• The Device or System Address Bits (Adr) comprise 5
Bits, in which the high-value Bits are transferred first.
Common device addresses are 0 for TV sets and 5 for
video recorders. In this way several remote controls can be
deployed in the same room.

• The Data or Command Bits (Dat) comprise 6 Bits for up to
64 differing keys (pressbuttons). The number keys 0 to 9
generate codes from 0 to 9. Here too the highest value Bits
are sent first.

11100010100

S t a r t C t l A d r D a t

1

www.elektormagazine.com March & April 2017 105

these do not have to be touch switches every time. Why not
use a magnetic sensor, a position sensor or an optical sensor?
You could turn an infinitely large number of ideas into reality.
The TV could be turned off by sunrise at the latest, or make
the position sensor on the door handle recognize when some-
body enters the room and then switch on the lights and the
radio to welcome them!

(160210)

Web Links

[1] www.elektor.com/arduino-sensor-kit

[2] www.elektormagazine.com/160152

[3] www.elektormagazine.com/160173

[4] www.elektormagazine.com/160210

[5] www.elektormagazine.com/140009

Toggle Bit, which changes with every key press and does not
need to be evaluated. It’s worth noting down this information,
so you can resend it identically. You can ignore the Toggle Bit
when doing this. If you transmit 382hex via the IR diode, this
corresponds to button 2 in RC-5 code.
Because in this situation the Arduino has to get by without the
Extension Shield, the switching output is assigned to connector
13. Doing this enables us to control the LED on the Arduino.
The relay can now be connected to Portpin 13 and straightaway
a load can be switched either with an RC-5 remote control or
else by a second Arduino with an IR diode.
Here too the pressbutton commands 2 and 0 can be transmit-
ted back in the reverse direction. As in the Bascom version,
the relevant buttons are assigned to A0 and A1, in which the
internal pull-ups have been enabled. Here you can hook up
plenty of the things that the sensor kit has in store. Of course

Listing 5. RC-5 transmitter and receiver in Bascom.

'RC5LCD In AD2, PORTC.2, Out OC1A, PORTB1
...
Do
 If S2 = 0 Then
 Togbit = 0 : Address = 0 : Command = 2
 Do
 Rc5send Togbit , Address , Command
 Waitms 100
 Loop Until S2 = 1
 End If
 If S1 = 0 Then
 Togbit = 0 : Address = 0 : Command = 0
 Do
 Rc5send Togbit , Address , Command
 Waitms 100
 Loop Until S1 = 1

 End If
 Getrc5(address , Command)
 If Address < 255 Then
 Locate 1 , 1
 Lcd Address ; " "
 Locate 2 , 1
 Togbit = Command / 128
 Lcd Togbit ; " "
 Locate 2 , 5
 Command = Command And &B01111111
 Lcd Command ; " "
 Print Command
 If Command = 2 Then Portb.2 = 1
 If Command = 0 Then Portb.2 = 0
 End If
Loop

Listing 6. IR control in Arduino-C.

#include <IRremote.h>
int RECV_PIN = A2;
IRrecv irrecv(RECV_PIN);
IRsend irsend;
decode_results results;
int d;
int S1 = A0;
int S2 = A1;
int LED = 13;
int kathode =2;
void setup()
{
 Serial.begin(9600);
 irrecv.enableIRIn();
 pinMode(S1, INPUT_PULLUP);
 pinMode(S2, INPUT_PULLUP);
 pinMode(RECV_PIN, INPUT_PULLUP);
 pinMode(LED, OUTPUT);
 pinMode(kathode, OUTPUT);

}

void loop() {
 if (irrecv.decode(&results)) {
 Serial.println(results.decode_type);
 Serial.println(results.value, HEX);
 d = results.value & 15;
 Serial.println(d);
 if (d==2) digitalWrite(LED,1);
 if (d==0) digitalWrite(LED,0);
 }
 if (digitalRead(S1) == 0) irsend.sendRC5(0x382,
32);
 if (digitalRead(S2) == 0) irsend.sendRC5(0x380,
32);
 irrecv.enableIRIn();
 delay(100);
}

