
Reading digital data on the Arduino platform

SCHOOL OF MAKING

78

n the previous article in this series, we
showed you how to blink the built-in LED
on an Arduino device. Here, we’ll show you
how to use a push button to toggle the LED on
and off. This article illustrates one way to read
digital data using an Arduino.

Arduino boards offer several ways to interact with
external hardware components, in all cases this
means sending a signal to, or reading data from, an
external device. Those inputs and outputs, coupled
with the logic you’ve coded in your project’s sketch,
are the meat of any Arduino project. Arduino inputs
come in two formats: analogue and digital, in this
article, we’ll cover one way to use digital inputs.

Each digital input on the Arduino can read two
values: LOW and HIGH. LOW is a constant defined
within the Arduino IDE that essentially means zero
(or very little) voltage. A value of HIGH references

Learn how to read external data in an Arduino project

Reading digital data on
the Arduino platform

Left
The Arduino development
environment includes code
highlighting, to help you
spot typos in your code

the highest voltage value the Arduino can support
(typically 3 V (volts) on an Arduino operating at 3 V,
and 5 V on an Arduino operating at 5 V).

Note: Any Arduino device you use for your
projects will have one or more digital inputs;
these usually double as digital outputs as well. You
learned how to use a digital output in the series’
previous article.

You might be saying to yourself: “How useful is
a digital input if it’s only either on or off? That’s only
one bit, right?” On the Arduino, digital inputs are
used in two different ways: to read point-in-time
input values, such as the status of a button, or to
read a stream of binary digits (bits) values which
an application converts into more useful data such
as bytes, or numbers. In this article, you’ll find
out how to use a digital input to read the status of
a push button.

John Wargo

@johnwargo

John is a professional
software developer,
writer, presenter,
father, husband, and
geek. He is currently a
Program Manager at
Microsoft, working on
Visual Studio Mobile
Center. You can find
him at johnwargo.com

YOU’LL NEED

An Arduino
or Arduino-
compatible
device
We recommend
the Arduino Uno for
first‑time users

Momentary push
button

A 10 kΩ resistor

Breadboard

Breadboard
jumper wires

I

https://twitter.com/johnwargo
http://johnwargo.com

79

FORGE

DIGITAL INPUTS CAN READ SINGLE
VALUES OR STREAMS OF DATA
In the previous article in this series, we showed you
how to use the default Arduino Blink sketch to turn
an Arduino’s on-board LED on and off on a specific
interval. In this project, we’ll extend that project, and
use a button to turn the LED toggle the status of the
LED. When the push button is depressed (pushed), the
LED turns on. When the push button is up (open), the
LED turns off.

Before we wire up the circuit, let’s take a look at the
code (you can find the complete code for the example
at hsmag.cc/KTioNX).

The sketch defines the BTNPIN constant used
to identify the Arduino digital input pin to which
the button is connected. Following a common
convention, we created the constant name in
all capital letters, making it easy to distinguish
constants from variables in a sketch. You’ll populate
this constant value with the pin number for your
particular hardware implementation.

Next, the sketch defines the btnState variable,
which is used to store the current state of the button;
this value is used to determine whether to turn the
LED on or off. Notice how we initialised the variable to
LOW; this isn’t required, but gives the sketch a fallback
in case it can’t read the button, setting the LED to off
by default the first time through the loop.

// BTNPIN defines the Arduino input pin to which the
// button is connected
const int BTNPIN = 2;

// btnState stores the current button state (HIGH
or LOW)
// initialize it to LOW so the LED stays off until
the sketch
// reads a HIGH state for the button input
int btnState = LOW;

In the sketch’s setup function, the code sets the
mode for the Arduino I/O (input/output) pins used
by the sketch. The sketch calls pinMode to set the
default LED pin (defined in the Arduino IDE’s constant
LED_BUILTIN) to output mode, then calling pinMode
again to set the push button pin to input mode. Finally,
the function turns the LED off, through a call to
digitalWrite, just to make sure we start with the LED
in a known state before the first loop begins.

// The setup function runs once every time the
Arduino
// powers up or resets (after a sketch update, for
example)

Figure 1
The Fritzing tool (fritzing.org) can be a great way of desiging
your circuits before starting on your breadboard

The resistor is used
in this circuit to help
force consistency of
digital input values.
Without the shunted
circuit to ground,
there’s no clear
definition of LOW vs.
HIGH, and the input
could ‘float’ at an
indeterminate value
without an input
value applied. With
the resistor in place,
there’s a clear
definition of LOW
when the button
is open through
the connection to
ground. With the
button pushed,
the ‘slower’ path
(through the
resistor) is ignored
because it’s a more
expensive route
than the direct route
to the digital input.

QUICK TIP

1
1

5
5

10
10

15
15

20
20

25
25

30
30

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

13 12 11 10

9 8 7 6 5 4 3 2

L

5V A
0

ANALOG IN

A
R

E
F

1

G
N

D

TX
RX

R
E

S
E

T

3V
3

A
1

A
2

A
3

A
4

A
5

V
IN

G
N

D

G
N

D

DIGITAL (PWM=)

Arduino TM

IO
R

E
F

IC
S

P

ICSP2

ON

POWER

01
TX

0

R
X

0RESET

 A good practice for developers is to use constants to store values used in multiple
places in a sketch. The BTNPIN constant is a good example for this; by pulling the
value into a constant defined at the beginning of the sketch, you make it easy to
change this value if the hardware configuration changes (if you connect the button
to another digital input pin, for example). You could skip this step, but if you later
changed the input pin for your project, you’d have to locate every place in the
sketch where it’s used, then change each instance. For this small sketch it’s not
that big of an issue, but for larger sketches it’s much easier to do it this way and
make one change that affects the whole sketch instead of many little edits, and
potentially missing one.

STAYING CONSTANT

void setup() {
 // initialize digital pin LED_BUILTIN as an
output.
 pinMode(LED_BUILTIN, OUTPUT);
 // initialize the push button pin as an input:
 pinMode(BTNPIN, INPUT);
 // set the initial state of the LED (off)
 digitalWrite(LED_BUILTIN, btnState);
}

In the sketch’s loop function, the code reads the
button status through a call to digitalRead and stores
the result in the btnState variable. Next, the code

http://hsmag.cc/KTioNX
http://fritzing.org

Reading digital data on the Arduino platform

SCHOOL OF MAKING

80

uses the value in btnState to set the LED status using
a call to digitalWrite. When btnState is LOW, the
code turns the LED off; when HIGH, it turns it on.

// The loop function runs repeatedly as long as a
sketch is
// loaded and the Arduino has power.
void loop() {
 // Read the state of the button; it’s a digital
input,
 // so possible returned values are HIGH or LOW.
 btnState = digitalRead(BTNPIN);
 // Use the measured value to set the LED state
 digitalWrite(LED_BUILTIN, btnState);
 // This whole function can be simplified to the
following
 // single line of code:
 // digitalWrite(LED_BUILTIN, digitalRead(BTNPIN));
}

The code, as shown, breaks that action into two
steps: reading the value from the input pin into a
variable, then using that variable value to set the
output on the default LED pin. That’s a great way to
do it when you’re illustrating how to do something,
but you’ll use less memory and get better
performance in your sketch if you consolidate the
two steps into one, as shown in the commented
line in the code (shown here uncommented):

digitalWrite(LED_BUILTIN, digitalRead(BTNPIN));

Here, the result from the call to digitalRead is
passed as an input to digitalWrite. You won’t get
tremendous performance benefit doing this here
but, for larger sketches, especially when you’re
bumping up against memory limits on the Arduino
device, it’s a useful approach.

PUSH TO START
Push buttons are mechanical devices, and as
you’re pushing or releasing the button, there’s no
guarantee that the Arduino can get a solid reading
every time the button is pushed or released. To
accommodate this, you can adjust your sketch so it
debounces the button connection, ensuring that the
button has been pressed for a minimum number of
time before triggering a change in LED status.

In the following example, we’ve enhanced the
previous example to include debouncing; you can
find the complete code for the following example
at hsmag.cc/pEzXyu.

At the beginning of the code, the sketch defines
the same BTNPIN constant and btnState variable
used in the previous example. We’ve also added
the prevBtnState variable to keep track of the
previous state of the button, and the ledState to
track the current state of the LED. The lastToggle
variable keeps track of the time the button state
changed. Finally, the DEBOUNCE_DELTA constant
defines the number of milliseconds the sketch
waits before it believes in a reading from the
button. You’ll see all of these in action later in
the sketch.

// BTNPIN defines the Arduino input pin to which
the
// button is connected
const int BTNPIN = 2;
// btnState stores the current button state
(HIGH or LOW)
// initialize it to LOW so the LED stays off
until the sketch
// reads a HIGH state for the button input

Bouncing and debouncing are terms used when describing interactions with electrical
connections like the one we have in the push button used in this project. As a button or
switch begins a connection or disconnection, there’s an uncertainty in the connection
as the contacts move. A button potentially makes multiple intermittent connections
until the button contacts connect solidly; this is called bouncing. To mitigate bouncing,
Arduino developers implement debouncing, a mechanism used to force a single signal
from the button through some extra code. In this example, the code debounces the
button connection by forcing the application to wait a minimum amount of time with a
connection before considering it to be accurate.

BOUNCING ALONG

Below
The complete circuit
assembled and
running with an
Arduino Uno

http://hsmag.cc/pEzXyu

81

FORGE

int btnState = LOW;
// A place to store the previous loop’s button
state
int prevBtnState = LOW;
// Used to track the current state of the LED
int ledState = LOW;
// Stores the last time the status of the button
changed
unsigned long lastToggle = 0;
// Specifies the amount of time the button must
stay pushed for it
// to trigger the LED on or off. Increase this
value if your LED
// flickers
const unsigned long DEBOUNCE_DELTA = 100; //
milliseconds

The setup function is precisely the same as the
previous example.

void setup() {
 // initialize digital pin LED_BUILTIN as an
output.
 pinMode(LED_BUILTIN, OUTPUT);
 // initialize the push button pin as an input:
 pinMode(BTNPIN, INPUT);
 // set the initial state of the LED
 digitalWrite(LED_BUILTIN, ledState);
}

In the loop function, the code reads the button
using digitalRead, just like the previous example.
Next, the code checks to see if the current state of
the button is the same as it was the previous time
the loop executed. If it isn’t, the code stores the
current time in the lastToggle variable.

AROUND AGAIN
The next time through the loop, if the button state
hasn’t changed, the sketch checks to see how
long its been since the last toggle (by subtracting
the value in lastToggle from the current time). If
the button state hasn’t changed in more than
DEBOUNCE_DELTA milliseconds (if ((millis() -
lastToggle) > DEBOUNCE_DELTA)), then the sketch
knows it has an accurate button reading, and it
toggles the LED.

void loop() {
 // Read the current state of the button
 btnState = digitalRead(BTNPIN);

 // Is the button in the same state as the last
time
 // we came through the loop? No? Then we need

to record
 // the current time (in milliseconds)
 if (btnState != prevBtnState) {
 // store the current time in milliseconds
 //It doesn’t matter what the actual time is,
all we need
 // to know is how long did the button stay in
this state
 lastToggle = millis();
 //Reset our previous state, so this check
skips next time
 prevBtnState = btnState;
 } else {
 // OK, the button states (current and
previous) are the same
 // Lets see if they’ve been the same for
DEBOUNCE_DELTA
 // milliseconds
 if ((millis() - lastToggle) > DEBOUNCE_DELTA)
{
 // the button’s been pushed (or not pushed)
for at
 // least debounceDelta milliseconds, so its
time to
 // toggle the LED if needed
 //Is the LED at the same state as the button?
 if (ledState != btnState) {
 // No? Then toggle it
 digitalWrite(LED_BUILTIN, btnState);
 //Then reset the LED status
 ledState = btnState;
 }
 }
 }
}

To test either of these sketches, wire a button
into an Arduino (see Figure 1, page 79). On one
side of the button, the connection shunts from
the 5 V connection through the 10 kΩ resistor to
ground (GND). The other button connection routes
to the digital input pin 2. With the button pushed, a
connection is made from the 5 V source to the digital
input, bypassing the resistor and forcing the circuit
to HIGH. When the button is released, the connection
to the digital input pin disappears, and the voltage
runs through the resistor to ground, making it LOW.

Using the Arduino IDE, upload the code to the
Arduino device and try pushing the button to toggle
the LED on and off. Play around with the value in
the DEBOUNCE_DELTA constant to see how it affects
the sketch’s reaction to the button.

Don’t forget, all of the project source code is
available at hsmag.cc/dMDWFx.

lastToggle and
DEBOUNCE_DELTA
are both long
integers because
the sketch
uses them to
calculate time
deltas, and time
values are very
large integers.
Even though
DEBOUNCE_DELTA
is a small number
(comparatively),
since the sketch
will be doing
arithmetic using
those values,
we made them
the same type
to avoid any
conversion
issues.

DELTA
BIG

The Arduino’s
millis() method
retrieves the current
time in milliseconds
since the Arduino
started running the
current sketch; it
doesn’t give the
sketch an accurate
time, but does let
the sketch track
how long it has been
since a previous
measurement.

QUICK TIP

http://hsmag.cc/dMDWFx

