
Arduino Programming: Reading data from devices

SCHOOL OF MAKING

82

o you want to read information
about your environment using a
digital temperature and humidity
sensor, and drive the status of an LED
based on the current temperature?
Well, let’s go! This project expands on

an existing sample application available online using
the simple, inexpensive DHT22 sensor.

In previous articles, we’ve shown how to read
both analogue and digital data values from connected
devices. Most digital devices transmit more than a
simple on/off value, streaming numeric or string values
as a series of digital bits. In this scenario, the sending
device varies its output in a pre-defined pattern that
both the Arduino and the DHT22 understand. The
device sends each data bit one by one until it has sent
everything. It sends the appropriate value (high or low,
depending on the bit value), then waits before sending
the next. On the receiving end, the Arduino uses
special code that reads those values.

To read this data, your Arduino needs to know the
particular pattern of digital values the device sends.
Fortunately, there are many libraries available, so

Measure information from your environment using simple
digital devices and use the data to control hardware

Arduino Programming:
Reading data from devices

most of the time, you can communicate with devices
without having to do the low-level code yourself.

We’ll use the DHT22, a widely available, inexpensive
temperature and humidity sensor. Arduino sketches
retrieve environment data values from the device using
a library provided by the folks at Adafruit. The device
provides four electrical connections (only three of
which are used); its connections, by pin number from
left to right in the figure, are:

1. V+
2. Data out
3. Not connected
4. Ground

When you connect the DHT22 to an Arduino, wire
the DHT22’s pin 1 to a 3 V or 5 V power source, pin 2 to
a digital input on the Arduino, and pin 4 to the Arduino’s
ground. For this project (and associated source code),
we’ll connect the data output (pin 2 on the DHT22) to
the Arduino’s digital input 2.

With those connections in place, it’s time to start
looking at the code that reads sensor values. Before
you use the sensor, install additional libraries in the
Arduino IDE. The folks at Adafruit provide two libraries
that you’ll need in order to talk with the sensor.

ADDITIONAL CAPABILITIES
Let’s do the manual installation first. Adafruit’s
DHT sensor library and example files are stored in
a GitHub repository at hsmag.cc/wyGYGY. The
Arduino IDE installs all libraries in a common folder;
any Arduino libraries you place in folders in that
location are automatically loaded by the IDE on
startup. To determine the location where the IDE
stores its libraries, open the IDE’s preferences dialog
by opening the application’s File menu and selecting
Preferences from the menu. The IDE will open the
preferences pane shown in Figure 3. At the top of
the Settings tab in the dialog is an input field labelled
Sketchbook Location; this is where the IDE stores its
libraries folder.

John Wargo

@johnwargo

John is a professional
software developer,
writer, presenter,
father, husband, and
geek. He is currently a
Program Manager at
Microsoft, working on
Visual Studio Mobile
Center. You can find
him at johnwargo.com

Figure 1
The DHT22 is
available from sellers
including Adafruit,
who package it with
the resistor needed
to build the circuit
hsmag.cc/OBhmYH

D

http://hsmag.cc/wyGYGY
https://twitter.com/johnwargo
http://johnwargo.com
http://hsmag.cc/OBhmYH

83

FORGE

On my system (which is the example shown below
in Figure 3) sketchbooks are stored in the d:\dev\
hardware\arduino folder. Arduino libraries go in the
libraries folder in the sketchbook storage location.

Note: The Arduino IDE loads libraries at startup, so
before continuing, close the Arduino IDE now, or it
won’t recognise the library installed in the next step.

INSTALL LIBRARIES MANUALLY
To install the library manually, download the library from
the GitHub page or use the git command to clone the
repository to your local system. To install the library files
via download, click the green Clone or Download button
on the repository page to download the files, then
extract the files into the IDE’s libraries folder for your
system. After you’ve extracted the files, rename the
extracted folder to DHT.

If you have git installed on your system, there’s an
easier way to extract the library files. Open a terminal
window (or Windows command prompt), navigate to
the IDE’s libraries folder, and then simply execute the
following command:

git clone https://github.com/adafruit/DHT-sensor-

library DHT

git will connect to the repository, download the files,
then store them in a new DHT folder in the current
location. When you’re done, you should be able to
execute the dir command and see the resulting DHT
folder as shown in the figure.

The Adafruit DHT sensor library uses a library
provided by Adafruit; this library is published through
the Arduino library catalogue, so it’s easy to install.
Open the Arduino IDE then go into the Sketch menu,
select Include Library, and then Manage Libraries…. In
the Library Manager dialog that opens, enter Adafruit_
Sensor in the search field, then locate the Adafruit
Unified Sensor library highlighted in the figure. Click the
Install button to install the library: hsmag.cc/gpKgkR.

With the libraries installed, load a sample application
to measure temperature and humidity through the
sensor. In the Arduino IDE, open the File menu, select

Examples, then DHT Sensor Library. In the menu that
appears, select the DHTtester sample application.
Follow the instructions in the code to configure the
sketch for your hardware configuration. If you used the
DHT22 sensor connected to Arduino digital input 2,
you’re all set. If you have different hardware, you’ll need
to make some changes to the code.

THE DHT EXAMPLE SKETCHES INSTALL
WITH THE DHT LIBRARY
Before executing the sketch, open the IDE’s Serial
Monitor; to do this, open the Tools menu, and then
select Serial Monitor. Now, upload the sketch to the
Arduino and look for the temperature and humidity data
displayed in the Serial Monitor window as shown in
Figure 4 on the next spread.

Now, it’s time to do something with the temperature
data we’re collecting.

Imagine you’re monitoring the temperature of a
particular device and you want some sort of visual
notification that the temperature’s exceeded a threshold.
You could do all sorts of things in this case: light an
indicator light, sound an alarm, even send an email or
text message to your phone. As we’re just starting
out with Arduino programming, let’s do the easy one:
lighting an indicator light.

To add an LED to the circuit, you’ll need both an
LED and a resistor; the resistor acts a current limiter,
reducing the amount of current that passes through the
LED. You could connect the LED directly, and eliminate
the resistor, but the LED would burn out more quickly. In
general, a 220 Ohm resistor is sufficience to protect the
LED, but other values may be more appropriate.

YOU’LL NEED

An Arduino Uno
or compatible
device

DHT22
Temperature and
Humidity Sensor
adafruit.com/
product/385

A 10 kΩ
resistor

One or more 5 V
colour LEDs and
the appropriate
resistors

Breadboard

Breadboard
jumper wires

1
1

5
5

10
10

15
15

20
20

25
25

30
30

35
35

40
40

45
45

50
50

55
55

60
60

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

13 12 11 10

9 8 7 6 5 4 3 2

L

5V A
0

ANALOG IN

A
R

E
F

1

G
N

D

TX
RX

R
E

S
E

T

3V
3

A
1

A
2

A
3

A
4

A
5

V
IN

G
N

D

G
N

D

DIGITAL (PWM=)

Arduino TM

IO
R

E
F

IC
S

P

ICSP2

ON

POWER

01
TX

0

R
X

0RESET

Figure 2
Complete Arduino
Circuit using the
DHT22

Figure 3
Arduino IDE
Preferences

https://github.com/adafruit/DHT-sensor-library
https://github.com/adafruit/DHT-sensor-library
http://hsmag.cc/gpKgkR
https://www.adafruit.com/product/385
https://www.adafruit.com/product/385

Arduino Programming: Reading data from devices

SCHOOL OF MAKING

84

is defined in the TRIGGER_TEMP constant; set this
constant to the temperature value you want to use as
the temperature threshold. The TRIGGER_DIRECTION
constant specifies whether the LED should turn on
when the temperature is higher (greater than) or lower
(less than) the trigger temperature. When TRIGGER_
TEMP is 72, and TRIGGER_DIRECTION is GREATER_
THAN, the LED will illuminate when the temperature is
higher than 72 degrees.

#define LEDPIN 3 // the pin the LED is connected to

// constants used to determine the trigger direction
// greater or less than the trigger value
const int LESS_THAN = 0;
const int GREATER_THAN = 1;

// set this value to the temperature you want
// to trigger the LED on/off
const int TRIGGER_TEMP = 72; // Degrees F

// Trigger direction
const int TRIGGER_DIRECTION = GREATER_THAN;

//const int TRIGGER_DIRECTION = LESS_THAN;

In the setup function, the sketch performs the same
setup from the previous sketch; the only difference is
that it validates that TRIGGER_DIRECTION is a valid
value before continuing. The function also sets the pin
mode for the LED to output and flashes the LED twice
to let you know (visually) that the sketch is running.

void setup() {
 // initialize the serial communication link between
 // the Arduino device and the computer system
 // running the Serial Monitor
 Serial.begin(9600);
 Serial.println(“DHT Temperature Monitor”);

 Serial.println(“Validating sketch configuration”);
 // check to make sure trigger direction is
 // a valid value
 if ((TRIGGER_DIRECTION < LESS_THAN) ||
 (TRIGGER_DIRECTION > GREATER_THAN)) {
 Serial.println(“Invalid value for TRIGGER_
DIRECTION, please fix the sketch and try again”);
 // The code is broken, so loop infinitely
 while (true);
 // the sketch gets stuck here,
 // and never blinks the LED.
 }
 Serial.println(“Configuration validated”);

 // configure the LED pin for output mode

Figure 4
Serial Monitor output

Figure 5
Cloning the Adafruit
DHT Library

When you buy LEDs in bulk from Amazon, they
usually come with the appropriate resistor for the LED,
otherwise you’ll need to figure it out based on the
LED voltage, your voltage source (5 V for most Arduino
devices). There are a lot of great articles online that
walk you through the process of determining the best
resistor; here’s a good example: hsmag.cc/fTXDmC.

USE A RESISTOR WITH YOUR LED CIRCUIT
Add an LED to the circuit, connecting the Arduino’s
digital output pin 3 to one leg of the resistor. Connect
the other leg of the resistor to the LED’s anode (the
longer wire on the LED). Finally, connect the other
LED connector (the negative, or cathode connector) to
ground. Figure 5 shows the updated circuit diagram,
and final assembly is shown in Figure 6.

The code for this version of the project is based on
the demo code from the libaray; We’ve removed the
output to the serial monitor and added code that checks
the current temperature against a threshold and sets the
LED mode (on or off), appropriately.

At the beginning of the sketch, the code defines a
new value called LEDPIN – this defines the digital output
pin used to power the LED.

For this example, I’ve used pin 3, if your hardware has
a different configuration, change the value for LEDPIN to
match your hardware configuration.

Next, the sketch defines two constants: LESS_THAN
and GREATER_THAN. These are numeric values that
help the sketch understand how to determine if the
temperature has exceeded a threshold. The threshold

http://hsmag.cc/fTXDmC

85

FORGE

 pinMode(LEDPIN, OUTPUT);

 // Initialize the dht object
 dht.begin();

 // blink the LED twice so you can tell the
 // sketch is working.
 blinkLED(2, 250);

}

Finally, in the loop function, the sketch reads the
current temperature and figures out if the LED should
be on or off. The sketch first checks to see if it’s doing
a less than or greater than comparison, then sets the
LEDPIN output based on the results.

void loop() {
 // Wait two seconds between measurements
 delay(2000);

 // Read temperature in degrees Fahrenheit
 float currTemp = dht.readTemperature(true);
 // To work in degrees Celsius, do the following:
 //float currTemp = dht.readTemperature(false);

 // Make sure the sketch was able to read values
 if (isnan(currTemp)) {
 Serial.println(“Failed to read from DHT sensor!”);
 Return;
 }

 if (TRIGGER_DIRECTION < GREATER_THAN) {
 // Then we’re doing a less than option,
 // so check to see if the current temp
 // is less than the trigger temp and write
 // the appropriate value to the output pin
 digitalWrite(LEDPIN, (currTemp < TRIGGER_TEMP) ?
HIGH : LOW);
 } else {
 // Otherwise, we’re doing a greater than option,
 // so check to see if the current temp is greater
 // than the trigger temp and write the appropriate
 // value to the output pin
 digitalWrite(LEDPIN, (currTemp > TRIGGER_TEMP) ?
HIGH : LOW);
 }

}

To turn the LED on or off, the sketch simply writes
either a HIGH or LOW value to the digital pin. In the
past, you’ve seen it written like this:

digitalWrite(LEDPIN, HIGH);

In the sketch, we’ve dramatically reduced the
amount of code needed by using what’s known as

a ternary expression, which is basically a three-part
expression that looks like this:

currTemp < TRIGGER_TEMP ? HIGH : LOW

The first part is an expression that calculates to a
true or false result, in this case, whether the current
temperature is less than the trigger temperature.
For a true result, the expression returns the value
immediately following the question mark (in this
case, HIGH). For a false result, the code returns the
value after the colon (in this case, LOW). The call to
digitalWrite writes a HIGH or LOW value to the
output pin depending on the result of currTemp <
TRIGGER_TEMP.

digitalWrite(LEDPIN, (currTemp < TRIGGER_TEMP) ?
HIGH : LOW);

Upload this code to the Arduino and your DHT22
temperature sensor circuit should start monitoring the
local environment.

Figure 5
Adding an LED
to the circuit

Figure 6
Completed hardware
with LED

