

Everyday Practical Electronics, March 2016 35

using one or more miniature relays
(see Fig.2.2). These electromechanical
devices comprise a coil wound on a
high-permeability core and a moving
armature mechanically linked to a set
of contacts that make and break when
the device is actuated (see Fig.2.3).
When sufficient current is applied to the
coil of the relay the resulting magnetic
field will cause the soft iron armature
to pull-in and this in turn will open or
close the relay’s electrical contacts. A
typical miniature PCB-mounted relay
will operate from a 5V DC supply and
its contacts will pull-in at typically 75%
of this value. The specifications of such
a relay are listed in Table 2.1.

It is important to note from Table 2.2
that the relay coil requires an operating
current that’s well beyond the output
drive capability of the Arduino. We
therefore need an interface that will
provide the extra current required.
Fortunately, this can often be little
more than a low-power transistor and a
handful of other components, as shown
in Fig.2.4.

In Fig.2.4 the transistor can be almost
any NPN type with a current gain of
around 100, or more. Diode D1 counters
the effects of the induced voltage that
will appear across the relay coil as the
current (and consequently the magnetic

Parameter Value
Nominal operating voltage 5V DC

Nominal operating current 73mA

Maximum load rating AC 250V 10A, DC 30V 10A

Pull-in voltage (typical) 3.8V

DC coil resistance 70Ω

Power consumption (typical) 0.36W

Operating time (max.) 10ms

Release time (max.) 5ms

Contact resistance (max.) 0.11Ω

Operating life 100,000 operations at rated load

Maximum switching rate 30 operations per second

Table 2.1 Electrical specifications of a typical
miniature PCB-mounting relay

Fig.2.4. Simple single-transistor relay interface

Fig.2.3. Internal arrangement of a
typical relay showing the coil, armature
and contacts

Arduino World: Relay boards______________________
Many simple control projects can be
based on a ready-made relay board,
avoiding the need to construct your
own interface circuit. Fortunately, there
are quite a few to choose from and the
two most common types are fitted with
either four or eight relays, with each relay
having its own driver circuit.

Four-channel relay board
Fig.2.5 shows a typical four-channel
relay board. The board has a transistor
driver and an opto-isolator for each
output channel. Similar boards can be
purchased very cheaply (often less than
£5) and so it is invariably more cost
effective to purchase one of these boards
rather than attempt to build one yourself.

Individual relays are normally fitted
with single-pole changeover contacts
(equivalent to an SPDT switch) and are
commonly rated 250V AC at 10A or
30V DC at 10A. Inputs are usually TTL
compatible and active low (in other
words, they require a logic 0 output from
the Arduino to operate).

Isolation
Many relay boards (like the one shown
in Figs. 2.6) incorporate opto-isolators
and this makes it possible to isolate the
relay driver circuitry from the Arduino’s
circuitry (see Fig.2.7). However, in many
applications this feature will not be
required and the relay driver circuitry can
then be operated from the same supply
and ground connection as used by the
Arduino itself.

Relay board connection
In Fig.2.8(a) the +5V and GND connections
are common between the Arduino and
the relay board. In this arrangement
the relays must be 5V types and the
only isolation between the Arduino
and the load will be that afforded by
the relay alone. This will usually be
perfectly adequate for most applications,
including switching mains loads at
currents of up to several amps.

Fig.2.8(b) shows how higher-voltage
(eg, 12V or 24V) relays can be used,
while retaining a common ground (GND)

Fig.2.6. Transistor drivers and optical
isolators on the four-channel relay
board

Fig.2.5. A four-channel relay interface board

flux) collapses when
the transistor reverts
from a conducting
to a non-conducting
state. A typical value
for R1 would be
2.2kΩ when using

a relay coil that requires less
than 200mA to operate (eg, a
700Ω coil rated at 12V). This
value for R1 is sufficiently
small to ensure that TR1 is
driven into saturation when
a high-state output voltage
appears on the digital I/O line,
but large enough to reduce
the demand on the I/O port
to around 2mA.

A neater alternative to
using discrete components is the use
of an integrated circuit output driver,
such as the popular ULN2803. We will
be looking at this chip in a future Teach-
In 2016 article, but for the moment, if
you only have a couple of high current/
high voltage loads to drive then a simple
discrete circuit like the one shown in
Fig.2.4 is all that you need.

Teach-In 2016 (MP 1st & MT) – March 2016.indd 37 19/01/2016 14:30

36 Everyday Practical Electronics, March 2016

connection between the Arduino and
the relay board. Higher power relays
can be used for applications that involve
switching currents of up to 20A. In
all cases it is important to check the
specifications of the relay that you plan to

Fig.2.7. Complete circuit of a four-channel relay board

Fig.2.8. Three possible relay board configurations
providing different amounts of isolation

Fig.2.9. An eight-channel relay
interface board

use and verify its suitability for use in a particular application.
In Fig.2.8(c) we have shown a fully optically isolated

arrangement in which there is no common ground connection
between the Arduino and the relay board. This arrangement
offers the greatest amount of isolation, together with
improved noise immunity.

Eight-channel relay board
Fig.2.9 shows an eight-channel relay board. Like the four-
channel board that we’ve just described, boards of this type
are also available at low-cost from several sources. At under

£10 they offer an extremely cost-effective means of controlling up to eight loads
and at a cost that’s considerably less than the cost of purchasing the individual
components.

Coding relay outputs
Fortunately, it’s very easy to control one or more relays using just a few lines of
simple code. First, you will need to make sure that you define the digital output
pins to which the relays are connected using a line of the form:

int pump = 5; // Pump connected via a relay on digital pin-5
int heater = 6; // Heater connected via a relay on digital pin-6

Next, you will need to add a couple of lines into the setup() code block, as follows:

pinMode(pump, OUTPUT); // Pump is configured as an output
pinMode(heater, OUTPUT); // Heater is configured as an output

The relays and their respective loads can be turned on and off incorporating the
following lines of code at appropriate points in the main program loop:

Teach-In 2016 (MP 1st & MT) – March 2016.indd 38 19/01/2016 14:31

Everyday Practical Electronics, March 2016 37

digitalWrite(pump, LOW); // Turn the pump off

digitalWrite(pump, HIGH); // Turn the pump on

digitalWrite(heater, LOW); // Turn the heater off

digitalWrite(heater, HIGH); // Turn the pump on

Listing 1 shows a complete example where a fluid is heated
and pumped in a continuous 30s cycle. Note that the main
loop repeats indefinitely and can only be interrupted by using
the Arduino’s reset button.

Listing 2.1: Example of typical relay board code

/* Hot fluid cycle: heat for 24s and then pump for 6s */

int pump = 5; // Pump connected via a relay on digital pin-5
int heater = 6; // Heater connected via a relay on digital pin-6

void setup() {
 pinMode(pump, OUTPUT); // Pump is configured as an output
 pinMode(heater, OUTPUT); // Heater is configured as an output
}

void loop() {
 digitalWrite(pump, LOW); // Turn the pump off
 digitalWrite(heater, HIGH); // Turn the heater on
 delay(24000); // Wait 24s
 digitalWrite(heater, LOW); // Turn the heater off
 digitalWrite(pump, HIGH); // Turn the pump on
 delay(6000); // Wait 6s
}

Coding Quickstart : Understanding data types________________________________
Making decisions based on what’s happening and then acting on
this information in different ways is an essential pre-requisite
of any programming language. C provides you with a variety of
different conditional constructs that allow you to do this. Simple
decisions can be made using nothing more than if and else,
and loops can be controlled using while, do while, for and
loop. We will look at all of these starting with if and else.

The if construct
The if construct is the most simple of all the conditional
constructs. It is used when a statement (or a series of statements)
should be executed when a particular condition prevails. The
basic syntax is as follows:

if (conditional expression)
 // code to be executed if true,
 // each statement ending with ;

An example might be counting items into batches of 10 on a
conveyor. Let’s assume that we need to operate an LED when
the count reaches (or exceeds) ten items. The following fragment
of code would do this:

if (count >=10)
 digitalWrite(fullLED, HIGH);

If the value of count is less than 10 the condition evaluates
false and the statement following the condition is then simply
ignored. However, if the value of count is 10 or greater then
the condition evaluates true and the statement following the
condition is executed. In some applications it can be appropriate
to use a series of if statements to detect various conditions
and to act on them accordingly.

The if ... else construct
The if ... else construct is straightforward; its syntax is:

if (conditional expression)
 // code to be executed if true,
 // each statement ending with ;
else
 // code to be executed if false
 // each statement ending with ;

Here’s a simple example. Let’s assume that we are monitoring
an analogue voltage and wish to set a threshold of 512 as the
value at which a green LED should become illuminated and,
below this value, we would like a red LED to be turned on. Our
if … else construct would then look something like this:

if (inVoltage >=128)
 digitalWrite(greenLED, HIGH);
else
 digitalWrite(redLED, HIGH);

Unfortunately, this isn’t quite the whole story. The red and
green status LEDs should be mutually exclusive and so we
might need to ensure that, when one LED is turned on the
other LED is turned off. There are various ways that we
could do this. We could either set them both off before we
arrive at the if else construct or we could turn one on
and the other off within a construct containing more than
one statement (ie, a compound construct). Using the first
method we might have:

// start with both LEDs off
digitalWrite(redLED, LOW);
digitalWrite(greenLED, LOW);
// now decide which LED to put on
if (inVoltage >=512)
 digitalWrite(greenLED, HIGH);
else
 digitalWrite(redLED, HIGH);

The other possibility is:

// Read the input voltage and
// put the red or green LED on
if (inVoltage >=512){
 digitalWrite(greenLED, HIGH);
 digitalWrite(redLED, LOW);
}
else{
 digitalWrite(redLED, HIGH);
 digitalWrite(greenLED, LOW);
}

Notice how in this example we’ve compounded several
statements after the if and else and that that we’ve introduced
curly braces, { and }, to make the logic clear and unambiguous.

Of course, at some point earlier in the
code we would have to define the pins
that we are using to control the two LEDs
and initialise the variables (inVoltage,
redLED and greenLED).

Listing 2.2 provides you with a
complete example that you can run using
the excellent Arduino Uno simulator
that we introduced last month. Fig.2.10
shows the code running in the simulator.
Notice how we’ve entered the LED
pin numbers as well as the pin used
for the analogue voltage input in the
appropriate simulator boxes. You can
vary the input voltage by using the slider
in the bottom right of the screen, noting
how the status LEDs respond, changing
when the input voltage reaches the 512
threshold. Finally, it’s worth noting how
UnoArduSim reports the current values
of all of the variables in the bottom left-
hand window.

Teach-In 2016 (MP 1st & MT) – March 2016.indd 39 19/01/2016 14:31

38 Everyday Practical Electronics, March 2016

Listing 2.2: Using a compound if ... then construct

/* Simple decision making using a compound if..then
 construct
*/

int redLED = 13; // red LED on digital pin 13
int greenLED = 12; // green LED on digital pin 12
int inAnalogue = A0; // analogue input pin 0
int inVoltage = 0; // initialise the variable

void setup()
{
 pinMode(redLED, OUTPUT);
 pinMode(greenLED, OUTPUT);
}

void loop()
{
 // get the input voltage
 inVoltage = analogRead(inAnalogue);
 // illuminate the green or red status LEDs
 if (inVoltage >= 512){
 digitalWrite(redLED, HIGH);
 digitalWrite(greenLED, LOW);
 }
 else{
 digitalWrite(greenLED, HIGH);
 digitalWrite(redLED, LOW);
 }
}

Code Meaning Notes
a == b a is equal to b True if a and b have the same value

a != b a is not equal to b True if a and b have different values

a > b a is greater than b
True if a is larger than b (but not
true if they have the same value)

a < b a is less than b
True if a is smaller than b (but not
true if they have the same value)

a >= b
a is greater than or
equal to b

True if a is larger than b (and also
true if they have the same value)

a <= b
a is less than or
equal to b

True if a is smaller than b (and also
true if they have the same value)

Table 2.2 Conditions

Conditions
In the last example you should have noticed the >= condition
that we used to find out whether the input voltage has exceeded the
threshold value of 512. The ‘greater than or equal to’ condition isn’t
the only one that we have to play with, as Table 2.2 shows.

The while construct
The while construct provides you with a means of continuously
executing one or more statements until a condition evaluates false.
The loop containing the statement (or statements) will continue to
be executed as long as the condition remains true – but, as soon as
it becomes false the loop will terminate and execution will continue

with the next subsequent statement. The basic syntax is:

while (conditional expression){
 // statements to be executed if true,
 // each ending with ;
}

Here’s an example that shows how a belt motor could
be controlled using a while loop. The belt motor will
run for as long as it takes for an item placed on the belt
to reach a limit switch. Note that we must check the
status of the limit switch inside the loop. If we forget
to do this the motor will run forever!

while (limitSwitchStatus == LOW){
 // Limit not reached so run the motor
 digitalWrite(motorRun, HIGH);
// Check to see if anything has changed?
limitSwitchStatus = digitalRead(limitSwitch);
}

By making the conditional expression dependent on the
value of a counter modified inside the loop we have a
simple means of performing one or more statements a
predetermined number of times, as follows:

Fig.2.10. Using
UnoArduSim
to simulate the
execution of
Listing 2.2

Teach-In 2016 (MP 1st & MT) – March 2016.indd 40 19/01/2016 14:31

Everyday Practical Electronics, March 2016 39

count = 0;
while(count < 50){
 // code to be executed 50 times
 // each statement ending with ;
 count = count+1;
}

In this wait loop we increment the counter on every pass through the loop
until it reaches 50, at which point the conditional expression evaluates to
false and execution continues with the next statement in the code. Note
this neater way of incrementing the count value, as follows:

count = 0;
while(count < 50){
 // code to be executed 50 times
 // each statement ending with ;
 count++;
}

In this case, count++ is used to ‘post-increment’ the value of count.
In other words, it takes the current value of count, adds one to it and
places the new value back into the count variable.

Finally, here’s an example showing how a simple wait loop could
be used to flash an alarm LED ten times:

flashCount = 0;
while(flashCount < 10){
 digitalWrite(alarmLED, HIGH);
 delay(500); // wait half a second
 digitalWrite(alarmLED, LOW);
 delay(500); // wait half a second
 flashCount++;
}

The do ... while construct
The do ... while loop works in a similar fashion to the while loop,
but with the exception that the condition is tested at the end of the
loop, not the beginning. This means that the statements within the
loop will always be executed at least once. The syntax is as follows:

do {
 // code to be executed at least once,
// each statement ending with ;
} while (conditional expression);

Here’s an example of reading a pressure sensor and allowing it a short
time for its output to reach a steady value:

do {
 delay(100);
 // wait for the value to settle
cp = readPressure();
// read the pressure sensor
}
while (x < 10);

In this example we are calling the readPressure() function 10 times
before arriving at the final value returned from the sensor.

The for loop construct
The for loop is widely used in almost every computer language, and
C is no exception. The construct is used to repeat a statement (or series
of statements) whenever a condition evaluates true. If the condition
evaluates false then the loop is exited and execution continues with
the statement that immediately follows the loop. The for loop must
be initialised at the outset and thus is a little more complex than the
while loop. The basic syntax is:

for (loop initialization, conditional expression, increment){
 // statements to be executed if true,
 // each ending with ;
}

As with the while loop, a counter is often used to control the loop and
this is incremented or decremented each time round the loop. This
makes the construct ideal for use in any repetitive application, for

example, checking the status of a number of I/O lines.
It is important to remember that loop initialisation
occurs only once and before the loop is executed
for the first time.

The next code fragment shows how the ASCII
character set can be sent to the serial printer. Note
that, for this to run, we would first need to initialise
the serial port interface using a line such as Serial.
begin(9600). Note also that we have declared the
count variable, i, within the loop initialisation itself.

for (int i = 0; i <= 63; i++)
{
 testValue = 64 + i;
 Serial.print(testValue);
 Serial.print(“\n”);
 delay(100);
}

Program structure and layout
By now you should have gained some idea of what
Arduino code looks like and how it is structured but
before we go any further it is well worth explaining
the layout of a C program in a little more detail. You
may have noticed that the first few lines of code in a
program usually take the form of a heading enclosed
between pairs of characters, /* and */, which
constitute a comment block. Everything between
these two characters is taken as plain text and, since
this has no effect on program execution you can use
as many lines of text here as you want.

The title comment block is usually followed by a
number of variable declarations. The reason behind
this is simply that, in the C language, variables
must always be declared before they are used. In
fact, declarations don’t have to be placed at the
beginning of the program code but the point at
which they are declared (ie, their position in the
program) can impose restrictions on the scope over
which they can be used. However, since we often
need to use variables on a global basis (ie, anywhere
in our program code) we will often place them
before any of the other code. Declarations involve
assigning a variable type (see last month), a name
and (optionally) an initial value.

Next follows code that’s used for setting up. This
code is placed in a function called setup() and
it is executed at the beginning and only once. The
setup() function is often used to specify the pin
modes (ie, input or output) and to configure the
Arduino’s serial monitor, but if they are not being
used the setup() function can simply be left empty.

The main program code is written inside a loop
that executes forever (or until the reset button is
pressed or the power is removed). This loop()
function contains the functions that will execute
when the program is being run. Each function
takes the form of a block of code that is executed
whenever the function is called. Functions can be
the ones that are built into the language or they can
be user-defined. This feature allows us to extend
the basic language for our own needs with our
user-defined functions calling other functions (both
user-defined and in-built) as and when required.
Function declarations take the form of one or more
statements enclosed between curly braces, { and
}. Note that each individual statement must end
with a semi-colon, ;.

As well as the block comments that we mentioned
earlier, comments can be placed in-line. These
consist of plain text appearing after two // characters
and added at the end of the line to which they apply.
As previously mentioned, comments provide us with
a useful reminder of what’s going on in the code
and they can be invaluable when maintaining and
debugging a program.

Teach-In 2016 (MP 1st & MT) – March 2016.indd 41 19/01/2016 14:32

40 Everyday Practical Electronics, March 2016

D1 (green) D2 (red) Condition
off off Alarm waiting to be set

on off Alarm set and waiting to be triggered

off on Alarm triggered and waiting to be cancelled

Table 2.3: Status indication for the simple Arduino-based security alarm

Listing 2.3: Code for the simple Arduino-based security system

* Single zone alarm with SET and CANCEL buttons */

int triggerInput = 7; // Break to trigger alarm
int setButton = 11; // Alarm SET button
int cancelButton = 12; // Alarm cancel button
int alarmSound = 4; // Siren
int setLED = 5; // Alarm SET LED
int alarmLED = 6; // Alarm triggered LED
int setStatus = LOW; // SET button status
int cancelStatus = LOW; // CANCEL button status
int triggerStatus = LOW; // Trigger status

void setup()
{
 pinMode(triggerInput, INPUT);
 pinMode(setButton, INPUT);
 pinMode(cancelButton, INPUT);
 pinMode(alarmSound, OUTPUT);
 pinMode(setLED, OUTPUT);
 pinMode(alarmLED, OUTPUT);
 digitalWrite(alarmSound, LOW);
}

void loop()
{
 // Wait for set Button
 setStatus = LOW;
 while (setStatus == LOW && triggerStatus == LOW)
 // Loop must be closed to set the alarm
 {
 // Check to see if SET button has been pressed
 setStatus = digitalRead(setButton);
 }

 // Alarm has been set
 digitalWrite(setLED, HIGH);

 while (triggerStatus == LOW)
 {
 // Check if the alarm has been triggered
 triggerStatus = digitalRead(triggerInput);
 }

 //Alarm has been triggered
 digitalWrite(setLED, LOW);
 digitalWrite(alarmLED, HIGH);
 digitalWrite(alarmSound,HIGH);

 while (cancelStatus == LOW)
 {
 // Check if the CANCEL button has been pressed
 cancelStatus = digitalRead(cancelButton);
 }

 // Alarm has been cancelled
 triggerStatus = LOW;
 cancelStatus = LOW;
 // stop the alarm sound
 digitalWrite(alarmSound,LOW);
 // and also reset the LED indicators
 digitalWrite(alarmLED, LOW);
 digitalWrite(setLED, LOW);
}

In this month’s Get Real we are going
to use the Arduino Uno as the basis of
a very simple security system. Once
again, we’ve minimised the need for
anything much in the way of additional
hardware, so you will only need a
mini-breadboard and a few commonly
available components to try it out.

You will need:
Arduino Uno with power supply
USB Type-A to Type-B cable
Computer with an available powered
USB port
Mini-breadboard with a selection of
coloured connecting leads
1 standard red LED (D2)
1 standard green LED (D1)
2 330Ω resistors (R1 and R2)
2 10kΩ resistors (R3 and R4)
1 4.7kΩ resistor (R5)
2 miniature push-button switches (S1
and S2)
Proximity switches (as required)
1 piezoelectric sounder (PZ1) (must be
DC type)

Circuit
The complete circuit of our simple
Arduino-based security system is shown
in Fig.2.12. It uses six of the Uno’s digital
I/O lines; three of these are configured
as inputs and three as outputs.

Two momentary action push-button
switches, S1 and S2, are used to SET and
CANCEL the alarm. The former of these
switches is sensed by digital I/O pin-11,
while the latter is sensed by digital I/O
pin-12. The input loop is connected
between digital I/O pin-7 and ground
with R5 acting as a pull-up resistor so
that the input will go ‘high’ whenever
the loop is broken.

The green (SET) status indicator,
D1, is driven by digital I/O pin-5 and
the red (ALARM) status indicator,
D2, is connected to digital I/O pin-6.
The piezoelectric sounder (buzzer) is
connected to digital I/O in-4. Note that
the sounder needs to be a DC-operated
component (not one that requires AC
excitation).

Physical layout
The components are shown mounted
on the mini-breadboard in Fig.2.13. The
two status indicator LEDs will need to
be connected with the correct polarity
(see Fig.1.18 in last month’s Teach-In
2016). If the layout proves problematic
you could use a larger breadboard or a
prototype shield (more of this in a future
Teach-In 2016),

Indenting (often by three or four spaces)
is used to assist with program readability.
This becomes particularly important
when functions are enclosed within other
functions. Finally, Fig.2.11 illustrates the
various structural and layout features
discussed here.

Get Real : A simple Arduino-
based security systems_____________________

Teach-In 2016 (MP 1st & MT) – March 2016.indd 42 19/01/2016 14:32

Everyday Practical Electronics, March 2016 41

Fig.2.11. A simple Arduino program with various structural
features identified

The input to digital I/O pin-7 is
effectively a closed-circuit loop which,
when broken, triggers the alarm. In a
retail environment this can take the form
of a continuous loop of insulated wire
attached to any products that need to be
protected. In order to remove an item the
loop must be broken and this, in turn,

will trigger the
alarm. In other
applications the
loop can comprise
one or more
m a g n e t i c a l l y
o p e r a t e d
p r o x i m i t y
s w i t c h e s , a s
s h o w n i n
Fig.2.15. These

are designed for discrete protection of
doors and windows and they comprise
a pair of moulded parts that need to be
mounted adjacent to one another when
the door or window to which they are
attached is in the closed position. A
permanent magnet is enclosed in one
of the mouldings and a magnetic reed

Fig.2.12. Circuit of the simple Arduino-based security system

switch is mounted in the other. Proximity
switches normally have a sensing range of
between 10mm and 15mm and they are
ideal for use in a range of basic security
applications.

Code
Listing 2.3 shows the complete code
for the simple Arduino-based security
system. To help you understand what’s
going on we’ve included numerous
comments in the code. Note that the
main loop contains three while loops.
The first of these waits for the alarm to
be set (using S1). The second waits for
the alarm to be triggered (when the zone
loop is broken) and the third waits for the
alarm to be cancelled (using S2). The two
LEDs indicate as shown Table 2.3.

As before, the code should be
entered using the Arduino’s
IDE and then saved before
compiling and uploading it to
the Uno, as described in last
month’s Arduino Workshop.
Don’t forget to save your work
by clicking on ‘File’ and
‘Save’ or ‘Save As…’ when
you finish.

Next, click on ‘Sketch’
and ‘Veri fy/Compile’ .
Where errors occur during
compilation they often arise
from missing semi-colons or
incorrectly matched pairs of

curly brackets. Note also the use of two
equality signs (==) in the conditional loop
statement. The compiler will fail if you
only use one of them.

Testing
When you’ve corrected any coding errors
that the compiler reports you will be
ready to upload your code to the Uno.
Just click on the upload arrow and watch

Fig.2.13. Fritzing breadboard arrangement for Fig.2.12

Fig.2.14. Actual breadboard arrangement

Fig.2.15. Some common types of
proximity switch

Teach-In 2016 (MP 1st & MT) – March 2016.indd 43 19/01/2016 14:32

42 Everyday Practical Electronics, March 2016

Fig.2.16. Using UnoArduSim to simulate the execution of Listing 2.3 (note that we’ve selected
rising-edge triggering for digital inputs 11 and 12)

the progress report – but, before you do this it is important
to make sure that the input loop is closed. The LEDs on the
Uno should flash and the code should begin to execute. At
this point neither of the status indicators, D1 and D2, should
become illuminated. If you now press the SET button the
green LED, D1, should become lit. This indicates that the
alarm has been SET.

If you now break the loop
the alarm will be triggered. In
this condition the red status
LED should be illuminated
and the piezoelectric sounder
should be operating. To reset
the alarm you can press
the CANCEL button, S2.
Note that the alarm cannot
be cancelled if the loop is
still broken. To re-instate
the alarm you will need to
close the loop again, press
the CANCEL button and, if
all is well the red LED will
go out and the circuit will
then be ready to be put back
into the SET state.

Going further
There’s a great deal of
scope for going further
with our simple Arduino-
based security alarm. The
most obvious enhancement
would be the addition of
several more zones, each
with an LED to indicate
which of the zones has been
triggered. All this needs is
more of the digital I/O lines

configured as inputs and outputs (one pair for each additional
zone) together with some code that will poll each of the loops
in turn to see if any of them have been triggered.

Another useful modification would be an entry/exit delay that
would operate on the zone associated with access. This would
allow an entry door to be opened and closed without triggering
the alarm for a short period after pressing the SET button.

For applications in which a mains-operated sounder
or floodlighting is to be controlled, the output from the
piezoelectric sounder can be connected to a relay interface or
a ready-made relay board like those described earlier in this
month’s Teach In 2016. All of this makes this simple project
an excellent candidate for further experimentation.

Next month
In next month’s Teach-In 2016 we will look at displays and
keyboards that can be used with the Arduino. To this end,
Arduino Workshop deals with interfacing an alphanumeric
LCD display and Arduino World looks at keypads and buttons.
Our programming feature, Coding Quickstart, introduces string
and string manipulation and the functions that you will need
to read and print lines of text. Finally, Get Real will show you
how to build a simple entry/access control system.

Get the answer you’ve been
looking for

Vist the EPE Chat Zone
www.epemag.com

PICs?
Can

anyone help
me?

I Can
help!

General
Electronics

chat

Problem sourcing software?

Upgrade your Arduino Electronics to the Next Generation with

TinyDuino
As powerful as the Arduino Uno but smaller than a 2 pence coin.

Available from our eShop

Arduino Electronics

All the power of the Arduino in a fraction of the space, great
for building intelligence in to your projects.

www.eshop.icsat.co.uk

As an authorised reseller with an educational and
training focus we can support all aspects of this
outstanding piece of kit!

Get yours today via our eShop

Complete with a wide and growing range
of TinyShields - where will your next
project take you?

Move up to the Next Generation!

Fantastic for schools especially D&T and
Computing, meets the new requirements

Get the answer you’ve been
looking for

Vist the EPE Chat Zone
www.epemag.com

PICs?
Can

anyone help
me?

I Can
help!

General
Electronics

chat

Problem sourcing software?

Get the answer you’ve been
looking for

Vist the EPE Chat Zone
www.epemag.com

PICs?
Can

anyone help
me?

I Can
help!

General
Electronics

chat

Problem sourcing software?

Get the answer you’ve been
looking for

Vist the EPE Chat Zone
www.epemag.com

PICs?
Can

anyone help
me?

I Can
help!

General
Electronics

chat

Problem sourcing software?

Get the answer you’ve been
looking for

Vist the EPE Chat Zone
www.epemag.com

PICs?
Can

anyone help
me?

I Can
help!

General
Electronics

chat

Problem sourcing software?

Teach-In 2016 (MP 1st & MT) – March 2016.indd 44 20/01/2016 18:18

