
How to develop your own custom Arduino

TUTORIAL

92

Discover how to turn your Arduino project into a custom PCB

How to develop your
own custom Arduino

n this article you'll discover, step-by-step,
how to transition from an Arduino-based
project to a custom PCB design.

The Arduino microcontroller development
platform is an easy way to create your own
electronic DIY project. But, if your ultimate

goal is to bring your product idea to market,
then you’re going to eventually need a custom
PCB design.

 In this article you’ll discover exactly how you
can develop your very own custom microcontroller
PCB. The considerable time and cost required to
develop a custom PCB only makes sense if you
hope to eventually sell your product. It can also be
a fun learning experience to develop a custom PCB
for your personal projects.

CHOOSING THE MICROCONTROLLER
Most models of the Arduino use an 8-bit Atmel AVR
microcontroller. There are a few that are based on a
more powerful 32-bit microcontroller, including the
Arduino Zero, Due, MKRZero, and MKR1000. We’ll
be primarily focusing on the Arduino Uno in this
article, since it is the most popular model available.

Note that the Uno microcontroller is packaged in
a Dual In-line Package (DIP), which is then mounted
in a through-hole socket. A socket facilitates the
easy replacement of the microcontroller if it were
to become damaged. Use of a socket may be handy
in a dev kit, but a socket is almost never a good
idea for a custom design you plan to sell.

Arduinos are open-source, which of course means
that you can simply download the schematic circuit

John Teel

@JohnTeelEE

John Teel is president
of Predictable Designs,
which specialises in
helping entrepreneurs,
startups, makers,
inventors, and small
companies develop and
launch new electronic
products. John was
previously a microchip
design engineer for
Texas Instruments.

Figure 1
Open-source
schematic circuit
diagram for the
Arduino Uno I

https://twitter.com/JohnTeelEE

FORGE

93

diagram and the PCB layout design files for reference,
or to use as a really handy starting point for your own
custom board.

In the Arduino Uno schematic diagram shown
in Figure 1, you may notice there are actually two
separate microcontrollers (labelled U3 and U4).

U4 is an Atmel ATmega328P microcontroller,
whereas U3 is an Atmel ATmega16U2 microcontroller.
Both of these microcontrollers are part of Atmel’s
8-bit AVR line.

The ATmega328P is the core microcontroller that is
actually running your sketch code. The ATmega16U2
microcontroller is programmed to only act as a
USB to UART converter. This is necessary because
the ATmega328P does not provide any embedded
USB functionality.

As you may already be aware, the main purpose
of USB on an Arduino is for programming purposes.
It’s the simplest way to connect your Arduino to
a computer without the need to lug out any extra
fiddly hardware.

As this article will discuss in further detail, this
is not the case when designing your own custom
board. Instead, you will need a special piece of
external hardware to handle this USB-to-UART
translation. Unless you require USB for some other
reason, the ATmega16U2 portion of the circuit can
be removed.

Shown in Figure 2 is the schematic diagram for
the custom version of the Arduino Uno discussed
in this article. The main differences are that the

ATmeag16U2 has been removed, the power circuitry
has been redesigned to use a battery, and an LCD
display has been added.

DISPLAY
The Nokia 5110 LCD display can interface to any
microcontroller using only three to five digital output
pins. The display is powered by 3.3 V, so you’ll either
need to run it at 3.3 V, or use level shifters between
the display and the microcontroller.

YOU’LL NEED

Arduino Uno

Atmel ATmega328P
microcontroller

Nokia 5110 LCD
module

Texas Instruments
TLV70233 linear
regulator

ST Microelectronics
STBC08PMR USB
battery charger

ST Microelectronics
STC3100IQT battery
level monitor

AVR programmer

You will minimise
the cost to assemble
your PCB if you
strictly use surface-
mount technology
(SMT) components,
and no through-
hole packages.

QUICK TIP

Right
The Uno is the most
popular Arduino
model, and is an
excellent choice
for beginners

NEED SOMETHING MORE POWERFUL?

There are countless microcontrollers available with much higher performance than the
relatively simple 8-bit Atmel microcontrollers used in most Arduinos.

For example, much more powerful ARM Cortex-Mx microcontrollers are available.
Cortex-Mx is a very popular 32-bit processor architecture implemented by many
microcontroller manufacturers. Microcontrollers are available that are not only much
faster than the ATmega328, but which also include significantly more memory and
peripherals, to boot!

UPGRADE TO 32 BITS

The considerable time and
cost required to develop a
custom PCB only makes

sense if you hope to
eventually sell your product

”

”

How to develop your own custom Arduino

TUTORIAL

94

The Arduino Uno runs the microcontroller at 5 V,
so level shifters would be required. However, we’ve
chosen to power the microcontroller from 3.3 V, which
eliminates the need for any level shifters.

Referring to Figure 2, the display should be
connected as follows:

First, connect the VCC and LED pins to a 3.3 V
supply, and the GND pin to ground. Now, verify that
the backlight LEDs illuminate.

Next, you need to connect the digital data lines.
Connect the RST (reset), CS (chip select), D/C (data/
command), DIN (data in), and CLK (clock) lines to
GPIO pins on the microcontroller.

The RST pin could also be connected to the reset
signal, so the display resets automatically any time
the microcontroller is reset. The chip-select line can
also simply be tied to ground so the display is always
selected. Wiring the reset and chip-select pins in this
fashion reduces the number of GPIO pins required
from five to only three.

POWER CIRCUIT
Arduinos are designed to be powered by an external
DC power supply. A 6-20 V supply can be connected
to the power adapter plug and from that a 5 V supply
is generated (U1 in Figure 1). Alternatively, 5 V can be
supplied directly via the USB connector.

For the custom Arduino however, we're going to
make it function with a lithium-ion battery which can

be recharged via the USB port. A lithium-ion battery
provides a voltage supply of about 3.7 V. In our design,
we’ll use a linear regulator to step down this voltage
to 3.3 V.

The Arduino Uno uses a Texas Instruments LP2985
linear regulator rated for load currents up to 150 mA.
That is sufficient for our application, but in order
to give more room to grow we are instead using a
TLV70233 rated at 300 mA.

The big downside to linear regulators, compared
to switching regulators, is that they can often be
extremely inefficient and waste power by dissipating
it as heat. This can be especially critical for battery-
operated designs, of course. The amount of power
wasted by linear regulators is equal to the load
current times the voltage difference between

REGULATIONS

Switching regulators rapidly turn a series switch on/off
at a controllable duty cycle. The duty cycle determines
how much charge is sent to the output. Inductors and
capacitors are energy storage components that supply
energy during the off period. Since the series switch is
either on or off, and never operates in the linear region,
it wastes very little power. Switching regulators may
have an efficiency of 90–95% whereas linear regulators
are less than 50% efficient in some applications.

SWITCHING EFFICIENCY

Figure 2
The schematic
diagram for the
custom battery-
powered Arduino
design discussed in
this article

The key to being
able to understand
complex circuit
schematics is to
break them down by
each function. First,
understand each
function, then focus
on how the pieces
all fit together.

QUICK TIP

FORGE

95

the input and the output pins: P = VI = (Vin –
Vout)*LoadCurrent.

If an application requires a large input-output
voltage differential, and/or a high load current
capacity, then linear regulators are not likely the
best solution.

A linear regulator works well in this application
because the difference between the input and
output voltage is low (3.7 V – 3.3 V = 0.4 V), and
the current draw isn’t that high.

For recharging the lithium-ion battery we’re
using the STBC08 battery charger from ST
Microelectronics. Always use a battery charger
IC specifically designed for the type of battery
being used, no cheap substitutes.

Charging a lithium-ion battery is comprised
of three stages: pre-charge, constant current
(CC) fast-charge, and constant voltage (CV)
termination charge.

During the pre-charge stage, the battery will be
charged using a small trickle current that is about
10% of the fast-charge current.

Once the battery voltage reaches about 3.0 V, the
charger will enter the fast-charge constant-current
(CC) phase.

The battery continues to be charged in constant
current mode (fast charge) until the battery reaches
about 4.2 V. At that point, the charger switches to
constant-voltage (CV) mode.

On the STBC08, the fast-charge current is set
with a resistor up to a maximum of 800 mA. When
charging via a USB port you must be careful to not
exceed the maximum current capacity of the USB
port. The easy solution is to limit the charge current
to a maximum of 500 mA since all USB ports can
handle at least 500 mA.

Normally, the fast-charge current should be
limited to a maximum 1 C charge rate to prevent

DISPLAY

The LCD display used in this project was originally used
in the Nokia 5110 mobile phone that was introduced
way back in 1998. By today’s smartphone standards,
these are quite primitive monochrome displays, but
they still have lots of useful applications. They measure
about 1.5” diagonally with a resolution of 84 × 48 pixels,
and can be used to display graphics or text. They also
feature a white backlight for improved readability in
low-light conditions.

RETRO COOL

Figure 3
The PCB layout for
an Arduino Uno is
available to use as
a reference for your
own PCB design

For the custom Arduino, we are going to make it
function with a lithium-ion battery which can be
recharged via the USB port

”
”

How to develop your own custom Arduino

TUTORIAL

96

any overheating and early battery degradation. But,
every battery is different, so be sure to refer to the
datasheet for the specific battery being used.

The other function that is typically required for
a battery charger design is a way to indicate the
battery charge level. A lithium-ion battery has a very
non-linear discharge curve, so it’s impossible to
measure the state of charge by simply measuring
its voltage.

To accurately monitor the charge level for a
lithium-ion battery, the
best solution is to use
a chip designed for
this purpose, such as
the STC3100 from ST
Microelectronics.

The STC3100 interfaces
to the microcontroller via
a simple two-wire serial
interface called I2C. The microcontroller can now
precisely monitor and report the battery charge level.

PRINTED CIRCUIT BOARD (PCB)
The schematic circuit is an abstract engineering
diagram. Design of the PCB layout is necessary to
turn the abstract schematic diagram into a real-world
circuit board.

All Arduinos are open source, so you can easily
access the PCB layout design files (see Figure 3).
However, your PCB design will most likely need to
be developed from scratch to meet the size and
shape requirements for your specific product.

A microcontroller running at only a few tens of
megahertz (MHz), without any wireless functionality,
is a moderately easy PCB to design. Designing a
PCB requires significant technical skills, but is well
within the capability of most makers.

Always be aware that PCB layout design becomes
significantly more complex as clock speeds reach
into hundreds of MHz, and inevitably, even more
so for GHz speeds. You'll find that the PCB layout
for a high-speed microprocessor board, such as a

Raspberry Pi, is going
to be considerably
more complicated.

There are two general
precautions for laying out a
microcontroller PCB.

First, the crystal (which
provides a highly precise
clock for timing purposes),

and its associated load capacitors, must be carefully
laid out. This includes placing these capacitors as
near as you possibly can to their corresponding pins
on the microcontroller chip.

Secondly, be sure to place decoupling capacitors
as near as possible to the pins being decoupled.

Once you have the PCB layout design completed
(Figure 4), and have run the necessary verification
to ensure it matches the schematic, it’s now time to
order the boards.

You will need to send your PCB shop the PCB
layout files (in a format called Gerber), along with
your bill of materials (BOM).

All Arduinos are open
source, which means you
can easily access the PCB

layout design files

”
”

Figure 4
Shown here is
the PCB layout
for the custom
Arduino board

Older linear
regulators required
the input voltage
to be a couple of
volts higher than
the voltage on the
output. Now, most
linear regulators
are classified as
Low-DropOut (LDO)
regulators, meaning
they can operate
with an input voltage
only a few hundred
millivolts above the
output voltage.

QUICK TIP

FORGE

97

FIRMWARE DEVELOPMENT
As previously stated, an Arduino is programmed
by connecting it to your computer via USB. Using
USB allows the Arduino to be programmed from
any computer without the requirement for any
special hardware.

On the other hand, a custom microcontroller
circuit is usually programmed using a simpler serial
protocol such as UART, SPI, SWD, or JTAG.

Since these protocols aren’t supported by most
computers, a specialised hardware device called an
in-system programmer (ISP) is required.

They are called in-system programmers because
they allow programming while the microcontroller
is embedded in the full system. Programming the
microcontroller in this fashion allows for much
easier testing and debugging.

An ISP is generally used with a specific line of
microcontrollers. For example, the Atmel ISP is
called the AVRISP mkII (Figure 5) and is used to
program their 8-bit AVR line of microcontrollers
such as the ATmega328P, discussed in this article.

The next step is to begin porting your Arduino
sketch over to the native code required for the
specific microcontroller chosen.

An Arduino, and custom microcontrollers,
are both programmed using C++. But Arduino
has greatly simplified the programming
process by including an extensive library of
numerous functions.

For example, on an Arduino, in order to define a
GPIO pin as an output you would call the pinMode()
function as follows:

pinMode(PinNumber, OUTPUT);

Then, to set this output low you would call the
digitalWrite() function as follows:

digitalWrite(PinNumber, LOW);

Whenever you call either of these functions,
the critical code is executed within these two
already defined functions.

These functions won’t be automatically available
when transitioning to a custom microcontroller.
Instead, you will just have to develop this
fundamental code yourself.

FINAL THOUGHTS
The Arduino is celebrated as a great place to
get started with a proof-of-concept prototype,
or for just learning all you can about electronics.
However, if you hope to sell your product then
you’ll eventually need a custom PCB in order to

reduce your product’s cost, and to fit your desired
form factor.

Although by no means trivial, it is within the
capabilities of most makers to design their
own custom PCB. This is especially true for
relatively low-frequency circuits, such as for the
microcontrollers used in Arduino.

For higher frequency circuits, such as high-
performance microprocessors or wireless
functions, it would be advisable to use modules
in most cases. The use of a module will lower
the design complexity and reduce your FCC
certification costs.

Finally, it is recommended that you always be
sure to get your design reviewed by an electronics
engineer before you proceed with ordering
prototype boards.

Figure 5
A custom microcontroller
without a USB
communication port
requires a special hardware
device called an in-system
programmer (ISP). Shown
is the Atmel AVRISP mkII
used for programming
the firm’s AVR series
of microcontrollers

The 1C charge rate
means, for example,
if you have a battery
with a capacity
of 500 mAh, then
the maximum fast-
charge current
should be 500 mA.
A 2 C charge rate
would indicate you
can charge this
battery with up to
1000 mA of current.

QUICK TIP

