
82

SCHOOL OF MAKING

o you want to start programming
microcontrollers and doing some
cool projects with the hardware.
You’ve selected Arduino as your
starting platform, purchased a popular
Arduino board, and you’re ready to

get started. What’s next? In this short article, we’ll
show you how to get started coding for Arduino.

Arduino (arduino.cc) is a very popular hardware
platform for computer-controlled hardware projects.
Arduino is a small, inexpensive, programmable
microcontroller that exposes a multitude of
input and output (I/O) connections you can use
to create computer-controlled circuits, wiring in
switches, lights, sensors, and more. It’s an open
hardware platform, which means that the hardware
specification is open source, so anyone with
the means can design and distribute their own
Arduino-compatible hardware. Therefore, there’s a
series of devices made by arduino.cc and a bevy of
‘compatible’ devices from other vendors as well.

To program an Arduino device, you’ll code
applications in a language similar to very old
programming language called C; these applications
are called sketches. Because the Arduino is
basically a small computer system, although with
limited processing speed and memory, the platform
supports a subset of the capabilities of C. You’ll
code your Arduino applications in an integrated
development environment (IDE); Arduino offers
both a locally installed IDE or a cloud IDE to use
for your projects. There are alternative IDEs
available as well; you can find a list of options
at hsmag.cc/aQJqkJ.

Coding for Arduino

Get started with coding for the Arduino platform

Add Arduino power
to your projects

S
When creating sketches, you’ll code your sketch

in an IDE, then connect your Arduino compatible
device to your PC using an USB cable. With that in
place, the IDE compiles your sketches into executable
code, then downloads them to the Arduino device
over the cable. As your sketch runs, you can pass
data between the IDE and your Arduino device over
a serial communication channel enabled in the IDE
(shown in Figure 1). Once compiled code is deployed
to the device, the device resets and, once the device
completes initialisation, it executes the sketch.

 An Arduino sketch consists, at a minimum, of
two parts: code that runs once, and code that runs
repeatedly. Let us show you.

In the Arduino IDE (described later), an empty
Arduino sketch looks like this:

SERIAL COMMUNICATION
The serial communications capabilities of the
Arduino platform expose additional capabilities
for your sketches. At a minimum, you can use
serial communication to send data back to the
IDE while you’re troubleshooting your sketches.
To do this, open the IDE’s Tools menu and select
Serial Monitor. A new window opens, and any data
written using the Serial commands (described at
arduino.cc/en/Reference/Serial) will appear in the
monitor window.

You can also use serial communications to
transfer collected data (from sensors connected
to the Arduino board) to another computer system
like a Windows PC or a Raspberry Pi. Makers often
do this since the Arduino supports analogue inputs
and the Raspberry Pi does not. In this scenario,
the Arduino becomes merely a data collection
device, and the Raspberry Pi does whatever
number crunching is appropriate for the project,
potentially even displaying data on a connected
screen or uploading the data to a remote server
for processing.

Figure 1
Arduino
development
architecture

Development
Workstation

USB CABLE

Sketch Download

Serial Communication

John Wargo

@johnwargo

John is a professional
software developer,
writer, presenter,
father, husband, and
geek. He is currently a
Program Manager at
Microsoft, working on
Visual Studio Mobile
Center. You can find
him at johnwargo.com

http://arduino.cc
http://arduino.cc
http://hsmag.cc/aQJqkJ
http://arduino.cc/en/Reference/Serial)
https://twitter.com/johnwargo
http://johnwargo.com

83

FORGE

/*
*/
void setup() {
}
void loop() {
}

The first part of the sketch is a comment
block. Anything, absolutely anything you enter
between the /* and */ characters is ignored by the
Arduino compiler.

/************************************
 My First Arduino Sketch

 by John M. Wargo
 December, 2017

Meatloaf meatball pork ground round fatback
kielbasa cow porchetta pork loin ball tip. Spare
ribs picanha drumstick pork jerky cupim alcatra
meatball beef ribs. Ball tip ground round
pastrami pancetta shank kevin.
*************************************/

In your sketches, you’ll use this commenting
approach when you have multiple lines of content
you want displayed
within the sketch.
At a minimum, use a
comment block at the
beginning of the sketch
to describe the sketch,
as we’ve done in the
example, using dummy
content from the Bacon
Ipsum generator (at
baconipsum.com).
You should also use block comments like this to
describe important parts of your sketches.

You can also add single-line comments to your
sketches. To do this, start any line in your sketch
with double forward slash characters (//) or after
any of your code. All content following the double
forward slashes is ignored by the Arduino compiler.
In the following example, a single-line comment
precedes the definition of the numCols variable. The
comment and the executable code are on separate
lines, so we started the comment line with the
double forward slashes.

//Number of columns in the table
int numCols;

Or something like this where the comment
follows the definition of the relayStatus variable:

bool relayStatus; //The current status of
the relay (on/off)

The sketch’s setup function is defined with the
following code:

void setup() {
}

Any code you add to this function (you’ll add your
code between the curly braces {}) is executed by
the Arduino device as soon as you power it up and
the hardware finishes initialising. This function is
executed only once; you’ll use this function to set
up your sketch and execute the things that only
need to be done when the sketch starts.

You’ll normally use this to define the
configuration of your hardware; as many input/
output (I/O) connectors on the Arduino can be used
for either input or output, you’ll have to tell your
sketch how you intend to use them. We’ll show
you an example of this in a little while.

The final component of a minimalist sketch is the
loop function:

void loop() {
}

In this function, put any
code that you want to run
repeatedly on the Arduino.
The Arduino executes
the setup function once,
then executes the loop
function over, and over, and
over again until either the
Arduino explodes (it won’t,
we’re just kidding) or you
disconnect power from

the device. You can put all your code in the loop,
or break your code into smaller functions and call
those functions from the loop function.

To see all of this in action, look at the following
example. By default, the Arduino developer tools
include a simple sample sketch called Blink.

YOU’LL NEED

An Arduino-
compatible board
An actual Arduino
device is preferred
as there’s extra
setup required
for many Arduino
compatible boards.
The recommended
starter board is the
Arduino Uno
(hsmag.cc/QKaKXM)
or the newer, and
more capable,
Arduino Zero
(hsmag.cc/KGJbVd)

Microsoft
Windows, Apple
macOS, or Linux

Universal serial
bus (USB) cable
To connect the
Arduino device
to your computer
system. Arduino
on‑device connectors
vary; most use
a micro-USB
connector, but the
Uno uses a USB
A/B cable

Arduino is a small,
inexpensive, programmable
microcontroller that exposes

a multitude of input and
output (I/O) connections

”

”

Figure 2
Opening the Arduino
Blink sketch

http://baconipsum.com
http://hsmag.cc/QKaKXM
http://hsmag.cc/KGJbVd

84

SCHOOL OF MAKING

Most Arduino devices include an LED on board,
hard-wired into one of the Arduino’s I/O ports.
The included Blink sketch enables you to quickly
accomplish something with the Arduino – turning
that on-board LED on and off repeatedly.

Note: The Blink sketch starts with a long and
thorough introductory comment block that we’re
omitting here for brevity’s sake. We’ll show you
how to open the sketch soon, so you’ll be able to
study the whole sketch in detail.
// the setup function runs once when you press
reset or
// power the board
void setup() {
 // initialize digital pin LED_BUILTIN as an
output.
 pinMode(LED_BUILTIN, OUTPUT);
}

// the loop function runs over and over again
forever
void loop() {
 // turn the LED on (HIGH is the voltage level)
 digitalWrite(LED_BUILTIN, HIGH);
 // wait for a second
 delay(1000);
 // turn the LED off by making the voltage LOW
 digitalWrite(LED_BUILTIN, LOW);
 // wait for a second
 delay(1000);
}

In the setup function, there’s only one
executable line:

pinMode(LED_BUILTIN, OUTPUT);

Calling pinMode sets the configuration for one of
the Arduino’s I/O pins. In this case, its configuring
the I/O pin defined in LED_BUILTIN for output mode.
Remember, most Arduino boards have an on-board
LED; the Arduino team has preconfigured the
Arduino development environment to store the I/O
pin associated with each Arduino board in a variable
called LED_BUILTIN. Any time the sketch references
LED_BUILTIN, the compiler replaces the reference
with the actual pin number to which the LED is
connected. The Arduino Zero has its LED wired to
I/O pin 13, so for the Zero, the code is essentially:

pinMode(13, OUTPUT);

With this in place, the sketch knows that when
working with pin 13, it will be outputting (sending a
voltage) to the pin, not receiving input.

In the loop function, the code completes the
following steps:

 Uses the digitalWrite method to set the output
voltage on the LED_BUILTIN pin to HIGH. This means
that the pin gets a voltage equivalent to the current
operating voltage of the Arduino. Some Arduino
devices operate at 3 V and others at 5 V; all that’s
important to know here is that with execution of
this code, the Arduino is now powering the LED
connected to the I/O pin at its brightest.

 Waits for 1000 milliseconds (1 second) using the
delay() method.

 Uses the digitalWrite method to set the output
voltage on the LED_BUILTIN pin to LOW. This
translates to no voltage (0), essentially turning the
LED off.

 Waits for 1000 milliseconds (1 second) using the
delay() method.

Above
The Arduino Blink
sketch

Below
Configuring the IDE
for the connected
Arduino board

Coding for Arduino

85

FORGE

When the code runs, it will turn the LED on for
1 second, then off for 1 second, repeating the
process until you remove power from the device or
deploy a different sketch.

Now it’s time to see the sketch in operation. To
do this, you’ll start by
installing the Arduino IDE
on your computer system.
Open your browser of
choice and navigate
to arduino.cc. On the
site’s top menu, click the
Software link, then, on the
page that opens, download
the latest version of the
Arduino IDE for your
system’s operating system. Once the download
completes, launch the downloaded file to begin the
software installation.

Once the installation completes, start the Arduino
IDE. In the Arduino IDE, open the File menu, select
Examples, then 01.basics, then Blink, as shown in
Figure 2 (page 83).

Archiving built core (caching) in: C:\
Users\JOHNWARGO\AppData\Local\Temp\arduino_
cache_950966\core\core_arduino_avr_uno_
c3bfe3f79ffbeab93536a1a484b588d9.a
Sketch uses 928 bytes (2%) of program storage
space. Maximum is 32256 bytes.
Global variables use 9 bytes (0%) of dynamic
memory, leaving 2039 bytes for local variables.
Maximum is 2048 bytes.

If the verification fails, the IDE will display
information about any errors and reference the sketch
line number where the error was found. You’ll need to
fix any errors before continuing to the next step.

Finally, click the Upload button; the IDE will repeat
the verification step, then deploy the compiled
sketch to the connected Arduino device. When

the upload process completes, the Arduino device
will immediately reset, then begin executing the
new sketch. In this example, the Arduino will turn
its on-board LED on and off repeatedly until power
is removed from the board or a different sketch

is uploaded.
Now it’s time to play

around with the code. If
you remember from earlier,
the sketch uses delay
statements to control the
amount of time the LED
is on and off. Right now,
they’re coded to pause 1
second (1000 milliseconds);
modify the code so the

LED stays on for half a second (500 milliseconds)
and pauses for two seconds (2000 milliseconds) in
between. Upload the modified code to the board and
see what happens.

NEXT STEPS
We’ve only lightly brushed the surface of what you
can do with the Arduino platform. To make it easier for
Arduino developers to get started, the IDE includes
a whole catalogue of example applications you can
study and use to expand your skills. To access these
examples, in the Arduino IDE, open the File menu,
select Examples, then look for a sketch category that
appeals to you. The Basics category offers some
simple sketches you can use to expand from where
we’ve started here. There’s a simple sketch to fade
the on-board LED up and down (instead of turning it
on and off, as in the Blink example). There are also
sketches for reading analogue or digital signals; you’d
use these with the appropriate analogue or digital
output device connected to the Arduino. The other
sketch categories offer more sophisticated sketches
that work with different hardware devices and more.

To program an Arduino device,
you’ll code applications in a
language similar to an old
language called C; these

applications are called sketches

”

”

Below
Setting the IDE’s communication port

Below
Compile and Deploy buttons

http://arduino.cc

