
Tutorial WALKTHROUGH

raspberrypi.org/magpi 34 March 2015

Solve real-world electronic and engineering problems with your Pi and
the help of renowned technology hacker and author, Simon Monk

lectronics permeates every aspect of modern
life and it’s easy to take such technology for
granted without ever stopping to think just how

these things work. Small, low-cost computers like the
Raspberry Pi make it possible for hobbyists to put their
own take on commercially available products, and also
invent new gadgets simply for the fun of it.

In this series, we will be exploring the use of the
Raspberry Pi to make all kinds of everyday electronic
devices, starting with an ultrasonic parking sensor

E

SIMON MONK
Simon Monk is the author of
the Raspberry Pi Cookbook and
Programming Raspberry Pi: Getting
Started with Python, among others.
simonmonk.org
monkmakes.com

PARKING
SENSORS

EVERYDAY
ENGINEERING PART 1

designed to show you how far the rear corners of your
car are from any obstacle.

Each of these projects will be constructed using
a solderless breadboard and readily-available
components, so even if you don’t want to develop and
install these projects for real, you can prototype them to
learn more about engineering and electronic invention.

As you’ll see from the list of required components
nearby, our first project uses two low-cost ultrasonic
rangefinders to measure the distance from the sensor to

any obstacle in its path.
While you could attach

the rangefinders to your car
bumpers, with a sensor at
each of the two rear corners
of the car and a display
positioned so that it is visible
from the driver’s seat, you
could also place the sensors
on the wall of your garage
(assuming yours is not full of
rubbish), so that the display
can guide you in and tell you
when to stop.

The distance to any
obstacle for the right and
left sensors is indicated by
a rectangle that extends
further down the screen as
the distance to an obstacle
increases. In addition,
the actual distance to the
obstacle is displayed in cm

ETHERNET

USB X2 USB X2

GPIO

CAMERA

PWR IN

DISPLAY

A/V

3V3
GP2
GP3

GND

GND

GND

GND

GND

GND

GND

GND

GP4 GP14
GP15
GP18GP17

GP27
GP22

GP10
GP9

GP5
GP6
GP13
GP19
GP26 GP20

GP21

GP16

GP12

GP25
GP11

GP7
GP8

DNCDNC

3V3
GP23
GP24

5V
5V

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

+ _ + _

+ _ + _

 a b c d e f g h i j

 a b c d e f g h i j

HC-SR04

V
C

C

Tr
ig

E
ch

o

G
N

D

4.000

HC-SR04

V
C

C

Tr
ig

E
ch

o

G
N

D

4.000

We need to do
a voltage level
conversion to use 5V
rangefinders with 3V
Raspberry Pi GPIO pins

> �Half-size
breadboard

> �7x male-to-
female jumper
wires

> �2x male-to-male
jumper wires

> �4x 470 ohm
resistors

> �2x HC-SR04
ultrasonic
sensors

> �Code:
bit.ly/1KutV7K

You’ll
 Need

BUILD YOUR OWN

Low-cost ultrasonic
rangefinder modules
measure distance
from a few cm to a
couple of metres

Tutorial

raspberrypi.org/magpi 35March 2015

and the rectangle is
colour-coded: red
if closer than 30cm,
green if greater than
100cm, and orange if
it’s in between.

The ultrasonic
rangefinders are of the
type that you can buy
on eBay, sometimes

for less than a pound. These sensors are often used in
robot projects to detect obstacles. They use pulses of
sound waves to measure the distance to an obstacle over
a range of a few cm to several metres. Just search for
HC‑SR04 and remember to order two.

The HDMI display is only needed if you plan to install
the project for real in your car or garage; otherwise, you
can just use your usual Raspberry Pi monitor. Again, you
will find mini HDMI displays at a very reasonable price
on eBay. The model we used had a 7-inch display and
separate controller board. Look for a display that will
operate from 12V if you are going to connect it to your car.

The other parts are probably best bought as an
electronics starter kit. The Monk Makes Electronic
Starter Kit for Raspberry Pi includes the breadboard
and all the parts and wires except the rangefinders.
Most starter kits for the Raspberry Pi will include the
breadboard, jumper wires and some resistors.

Why use four resistors?
A Raspberry Pi’s GPIO pins operate at 3.3V, whereas
the rangefinder module’s pins operate at 5V. This does
not cause a problem when connecting the output of
the Raspberry Pi to the input of the rangefinder (for
example, a GPIO output on the Raspberry Pi to the
Trigger input on the rangefinder) because even though
the voltage at the input is a bit low, at 3.3V it will still be
high enough to activate the trigger input.

The problem arises when you are going in the
opposite direction and the 5V Echo output of the
rangefinder needs to connect to a GPIO input on the
Raspberry Pi. Putting 5V on a GPIO pin only designed

PARKING SENSORS

Left The HC-SR04
Ultrasonic Rangefinder.
Cheap-as-chips sonar

PROTOTYPING THE PROJECT
>STEP-01
Fit the rangefinders onto the breadboard
We consructed the prototype build of this project
in five steps. First, plug the rangefinders into the
breadboard holes at the far ends of the breadboard,
as shown in the picture.

>STEP-02
Join the power connections
Use a male-to-male jumper wire to connect the 5V
(labelled Vcc on the rangefinder) pins together, by
plugging the jumper wires into the same row as the
pins. Do the same thing for the GND connection.

>STEP-03
Add the resistors
Push the leads of the four resistors into the
breadboard, as shown in the diagram on the left
page. It doesn’t matter which way around they go, but
be careful that the leads don’t touch each other.

>STEP-04
Add the male-to-female jumper wires
Attach the male-to-female jumpers that will
connect the breadboard to your Pi. Colour-coding
the leads will help you to identify which connection
is which when you attach it to your Raspberry Pi.

>STEP-05
Link the breadboard to the Raspberry Pi
Finally, connect all the female ends of the headers
to the GPIO pins on your Pi. Working out which can
be tricky, but you could use a template like the
Raspberry Leaf or the Pi GPIO Reference Board.

Above 5V in, 3V out – protecting your Raspberry Pi’s GPIO pins

for a maximum of 3.3V could easily damage the pin.
Therefore, we use an arrangement of two resistors to
reduce this voltage from 5V to 2.5V, where it will still be
high enough to register as a high input, but still be well
below the maximum of 3.3V.

More advanced readers may prefer to use different
combinations of resistor to set the voltage a bit closer to
3.3V, but the advantage of just halving the voltage is that
all four resistors can be of the same value.

Building your parking sensor
Even if you plan to install the project for real, it’s
a good idea to start with the rangefinders plugged
directly into the breadboard, with the ultrasonic
transducers pointing outwards. This will allow you
to experiment with the project and make sure that
everything is working as it should be, before you
commit to some more permanent setup.

Tutorial WALKTHROUGH

raspberrypi.org/magpi 36 March 2015

Now that the hardware side of the project is done, we
need to get the software running. The program is written
in Python, using the Pygame library to provide graphics.
You can download the program from the internet by
typing the following into the command prompt:
git clone https://github.com/simonmonk/
pi_magazine.git

also used to define the colours that will be used in the
user interface by Pygame.

After this, we have some code that initialises the four
GPIO pins we want to use. Two of them are set to be
outputs, so that they can send out a pulse that causes
the rangefinders to send out an ultrasound ‘ping’. The
other two pins (the ‘echo’ pins) are set to be inputs, as

we need to be able to read them
in the program so that we know
when the echo has returned, and
therefore how long the delay
was, so we can calculate distance.

The next three functions
contain all the code relating to

measuring distance using an ultrasonic rangefinder.
The first of these (send_trigger_pulse) outputs a
pulse of just 0.0001 seconds on the pin supplied as
its parameter. This will cause the rangefinder to send
out a pulse of ultrasound. The next function
(wait_for_echo) is responsible for waiting until the
echo from that pulse of ultrasound is received, so that
the distance can be calculated by the length of time it
took for the echo to arrive.

The function get_distance puts all this together,
first sending a trigger pulse and then timing how long
it takes for the echo to arrive. Actually, it’s slightly
more complicated than that, because the echo cannot
be detected until after the pulse has finished sending.
If we check too early, we will get a false reading. That
is why there are two calls to wait_for_echo. The first
waits until sending of the pulse is complete and the
second actually times the delay until the echo arrives.

Graphical user interface
The rest of the code is concerned with the
user interface for the project. The function
colour_for_distance returns a colour to use when
drawing the rectangle for that sensor, depending on
how large the distance detected is.

The next few lines initialise the Pygame window and
define a font to use for the distance readout. While

Below You could use
the affordable HDMIPi
screen in your garage

The Python code for this project is
very well commented on GitHub

The program has a graphical user interface, so to run
the program, the windowing system must be running.
If your Pi is not set to automatically boot into the
windowing system, then type the following command to
start it up after you have logged in:
startx

Open an LXTerminal window and type the following
commands into it to run the program:
cd pi_magazine
sudo python 01_parking_sensor.py

After a short delay, the Pygame window will appear.
Try putting your hands in front of each sensor in turn

to make sure they are both working okay. If one isn’t,
check over your wiring carefully.

How the code works
The Python code for this program is very well
commented on GitHub (bit.ly/1KutV7K), so you’ll
probably find it handy to have the code up in an editor
while we go through it.

The program starts by importing the Python
libraries that will be used, and some constants for the
GPIO pins. So, if you wanted to swap things around
and use different pins, you could just change the
numbers to the right of the equals signs. Variables are

Below right The
complete prototype

Tutorial

raspberrypi.org/magpi 37March 2015

import RPi.GPIO as GPIO
import time, sys, pygame

trigger_pin_left = 8
echo_pin_left = 7
trigger_pin_right = 18
echo_pin_right = 23

green = (0,255,0)
orange = (255,255,0)
red = (255,0,0)
white = (255,255,255)
black = (0, 0, 0)

GPIO.setmode(GPIO.BCM)
GPIO.setup(trigger_pin_left, GPIO.OUT)
GPIO.setup(echo_pin_left, GPIO.IN)
GPIO.setup(trigger_pin_right, GPIO.OUT)
GPIO.setup(echo_pin_right, GPIO.IN)

def send_trigger_pulse(pin):
 GPIO.output(pin, True)
 time.sleep(0.0001)
 GPIO.output(pin, False)

def wait_for_echo(pin, value, timeout):
 count = timeout
 while GPIO.input(pin) != value and count > 0:
 count -= 1

def get_distance(trigger_pin, echo_pin):
 send_trigger_pulse(trigger_pin)
 wait_for_echo(echo_pin, True, 10000)
 start = time.time()
 wait_for_echo(echo_pin, False, 10000)
 finish = time.time()

Pygame is designed primarily to make games, it’s
excellent for any project that uses graphics, like this
one. You will likely want to alter the width and height
variables to match the resolution of your display.

The while statement starts the main loop. The
program will keep looping around the instructions
inside, from while until the end of the file, until the
program window is closed – this kind of loop is known
as an infinite loop.

Each time around the loop the Pygame events are
checked, and if the Pygame window has been closed (by
clicking the little cross in the corner of the window),
then the GPIO pins are set to a safe input mode using the
GPIO.cleanup function and the program exits.

Most of the time the window will not have been
closed, so the remainder of the loop will measure the
two distances from the rangefinders and then draw
rectangles on the screen, using the distance readings
to set the height of the rectangle. The height of each
rectangle is the distance in cm multiplied by 5 pixels.

Finally, there is a delay of half a second to stop the
distance figures updating too fast to read clearly.

 pulse_len = finish - start
 distance_cm = pulse_len / 0.000058
 return int(distance_cm)

def colour_for_distance(distance):
 if distance < 30:
 return red
 if distance < 100:
 return orange
 else:
 return green

pygame.init()
size = width, height = 800, 600 # the variables alter window size
offset = width / 8

screen = pygame.display.set_mode(size)
myfont = pygame.font.SysFont(“monospace”, 50)

while True: # the main loop starts here
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 GPIO.cleanup() # set GPIO pins to be inputs
 sys.exit() # quit the program entirely

 left_distance = get_distance(trigger_pin_left, echo_pin_left)
 right_distance = get_distance(trigger_pin_right, echo_pin_right)

 screen.fill(white)
 pygame.draw.rect(screen, colour_for_distance(left_distance),
		 (offset, 0, width / 4, left_distance*5))
 pygame.draw.rect(screen, colour_for_distance(right_distance),
	 	 (width / 2 + offset, 0, width / 4, right_distance*5))

 left_label = myfont.render(str(left_distance)+” cm”, 1, black)
 screen.blit(left_label, (offset + 10, height/2))
 right_label = myfont.render(str(right_distance)+” cm”, 1, black)
 screen.blit(right_label, (width/2 + offset + 10, height/2))

 pygame.display.update()
 time.sleep(0.1)

01_parking_sensor.py
Language

>PYTHON

DOWNLOAD:
bit.ly/1KutV7K

Using your parking sensor
Although you can extend the leads to the ultrasonic
rangefinder by perhaps a metre or so, any longer than
that and you are likely to have problems with the signal.
So, if you are installing this project for real in a vehicle,
it may be better to site the Raspberry Pi fairly near the
sensors and use a longer HDMI lead to connect the
Raspberry Pi to the display.

If you are installing this project for real, then you
will probably want to make the program start
automatically. That way, you don’t even need to have
a keyboard and mouse attached to the Raspberry Pi.
You can find links on how to do this on the Raspberry
Pi Forum: bit.ly/1DaEURv

The ultrasonic rangefinders are great little devices. You
can take the range-finding part of the program for this
project and use it in lots of other projects. You could, for
instance, use it to just make a distance meter, perhaps
displaying the distance in inches or cm. You could also
use it to create a theremin-like musical instrument that
changes the pitch of the note, depending on the distance
of your hand from the rangefinder.

PARKING SENSORS

NEXT
MONTH
In the next
project of this
series, we
will turn our
attention to
making a web-
controlled
door lock that
lets you unlock
your door
remotely.

