
projects e-blocks

22 elektor - 11/2008

Speed Camera Warning Device
Drive wisely!
Gilles Le Maillot (France)

The little module described here lets you detect geographical points
of interest (POIs) using the frames output from a GPS receiver
module. These POIs might be restaurants, petrol stations, or —why
not? — the positions of fixed speed cameras!

Having found it hard to find fully-devel-
oped, ambitious projects every year,
the circuit published online by Chris-
tophe Le Lann [1] seemed to me a good
starting point. So we adapted this Elec-
tronics Design project for the course
taught at our College (ENSIETA [2]).
We’ve used a PIC microcontroller and
added several new options
like a bigger memory, the pos-
sibility to update the memory
via USB, speed display, etc. In
addition, we produced the pro-
gram under Flowcode using E-
blocks [3].
Flowcode is a high-perform-
ance graphical development
environment for microcon-
trollers (PIC and AVR) that
makes it possible to swiftly
create quite complex electron-
ics systems, and above all, to
simulate them. The program
description is in the form of a stand-
ardized (ISO5807) flowchart using
macros that make it easier to control
complex peripherals, like 7-segment
displays, motor controllers, LCD dis-
plays, Bluetooth, TCP/IP, etc. Elektor
has already published numerous arti-
cles about this product. For myself, I
was quite surprised by how power-

ful, user-friendly, and easy to learn
this software is. Of course, it’s not
a magic tool, it does have its limita-
tions — for example, the PIC interrupt
library is not comprehensive enough,
and it only recognizes whole number
values to a maximum of 16 bits — but
these are fairly easy to work around.

In addition, the Flowcode simulation
mode allowed us to test the code for
this project (except for the serial con-
nection interrupt part) before imple-
menting it.
Thanks to Flowcode, we’ve been able
to produce a quite substantial project
in a limited time. The use of a tool like
Flowcode (in an educational context)

was a first for us — most students
appreciated it, and some of them actu-
ally managed to see the project right
through to the end!

Block diagram
As the block diagram (Figure 1) shows,

the system is fairly simple: a
GPS receiver provides the sys-
tem’s geographical position
once a second. This position
is then compared to the POI
locations stored in a database.
If there is a POI within around
500 m of the current position, a
visual and audible warning is
triggered.
The heart of the system is a
16F876A-I/SO microcontroller
from Microchip, which receives
the vehicle’s positions from
the GPS, looks them up in the

database, and drives the man/machine
interface (MMI).
This MMI consists of an LCD display,
a sounder and a bi-colour LED. If there
is no POI in the vicinity, the LCD just
displays the position and the time or
speed. The bi-colour LED flashes green
every time a GPS frame is received. In
the event of a POI nearby, the sounder

It’s up to you…
The project described in this article may be used
as a warning device for fixed speed cameras,
which is perfectly legal in France at the time of
publication of this article. However, this does not
mean to say that the use of this project is legal
in other countries, nor that it is going to remain
legal for use in France.

2311/2008 - elektor

Speed Camera Warning Device

sounds, the bi-colour LED lights up
red and steady, and the LCD displays
a warning message. The MMI has
one little unexpected extra: automatic
backlighting that adjusts itself to the
ambient light level.
An I²C memory is used to store the
geographical position of the POIs. A
USB interface is available for load-
ing the POIs into the memory from a
computer.
The GPS receiver, which sends its data
via a serial link, shares the microcon-
troller’s serial link with the USB inter-
face. A multiplexer allows the serial
data source to be selected using a sim-
ple switch.

E-blocks
The first platform was achieved using
these E-blocks: an EB006 for the devel-
opment platform (this is directly usa-
ble under Flowcode for programming
the PIC and supports many types of
PIC) and an EB005 for the LCD. For the
rest of the project’s components, we’ve
created our own E-block, connected to
the PIC PORT C. In this DIY E-block
(Figure 2) we find the I²C memory,
the FT232BL USB/RS-232 interface,
the bi-colour LED, the sounder, and a

MAX232 to allow us to dispense with
the USB port in the first instance and
be able to simulate the GPS frames on
a PC. Figure 3 shows the prototype in
all its splendour.

The program
The program, developed under Flow-
code, comprises two distinct sections.
The first and most important section
handles the dialogue with the GPS
module, compares the data from the
GPS with the locations stored in the

PIC16F876A

ISP connector
PIC programming

Mémoire
I2C

GPS
receiver

USB
connector

USB/RS232
interface

PWM2

LCD

PWM1

background
lighting

Transmitted Data

position saving

GPS frame reception

GPS communication
or

PC communication

Multiplexer

Multiplexing

RX
TX

R4

LDR

R5

BZ1 D2

S1

080615 - 11

Figure 1. Block diagram of POI warning device.

projects e-blocks

24 elektor - 11/2008

X1

6MHz

C8

22p

C9

22p

C6

33n

J2

+V

GND

USB-B

D–

D+

1

2

3

4

R15

47
0

Ω

R16

27Ω

R17

27Ω

R18

1k
5

C7

100n

C10

100n

C1

100µ

V+

R13

10
k

R14

15
k

RX USB

TX USB

24LC256

U1

SDA

SCK A0

A1

A0WP

1

5

8

4

6

2

37

V+

R6

1k
8

R5

1k
8

C5

100n

J3

R1

10
k

JP1

V+

RC5

RC3

RC4

RC5

RC2

J4

SUB D9

1

2

3

4

5

6

7

8

9

RC0

RC5

RC1

RC6

RC2

RC7

RC3

RC4

MAX232

T1OUT

T2OUT

R1OUT

R2OUT

R1IN

U2

T1IN

T2IN

R2IN

C1–

C1+

C2+

C2–

11

12

10

13

14

15

16V+

V-

7

89

3

1

4

5

2

6

C1

10µ

C2

10µ

J1

SUB D9

1

2

3

4

5

6

7

8

9

C4

10µ

C3

10µ

V+

TX RS232

RX 232

J1

1 8

2 7

3 6

4 5

RC6

RC7

TX RS232

TX USB

RX232

RX USB

D2

3
2

1 R10

220 Ω
RC0

RC1
080615 - 12

bicolour LED

FT232BL

PWRCTL

EEDATA

3V3OUT

RSTOUT

USBDP

USBDM

RXLED

TXLED

SLEEP

PWREN

TXDEN

V
C

C
IO

TEST

EECS

U3

EESK

XOUT

AGND
A

V
C

C

RST

GND

V
C

C

V
C

C

GNDXIN

DCD

DSR

RXD

RTS

TXD

CTS

DTR

26

32

13

1727 28

2914

11

12

10

31

30

19

20

24

23

25

22

21

RI
18

15

16

1

9

3

5

2

4

6

7

8

Figure 2. Circuit diagram of the home-made E-block. The serial data input is selected manually by the position of the jumpers on J1.

POI files
There are lots of different types of POI files, but
the ones we’re using contain nothing more than a
list of geographical positions in ASCII, hence their
.ASC extension. On one line of this list we find three
comma-separated fields: longitude, latitude, and a
name, often a number:

2.68111, 44.43686, “Num 40235”

The longitude and latitude are in decimal degrees.

The simplest way to obtain a POI file that can be
used by our project is to pay a visit to the PoiEdit
website [5]. PoiEdit is a shareware application that
lets you display and edit the contents of a POI file.
This website also has lots of links to other sites where you can get hold

of POI files (for free). To display
a POI file, all you have to do is
load it into PoiEdit and pick ‘Se-
lect All’ in the ‘Edit’ menu. Don’t
forget to load, and if necessary
calibrate, a map. Some maps
are also available on the PoiEdit
website.

To sort a POI file by longitude (if
you’re using the 080615-11_1
program), all you have to do is
click on the Longitude bar and
save the file in .ASC format.

The POI file thus created or
downloaded can be directly read by the transfert.exe update program,
as described elsewhere in this article.

2511/2008 - elektor

I²C memory (Figure 4), looks after
displaying the data, and drives the
sounder and bi-colour LED. The sec-
ond section is used for updating the
I²C memory with the help of a compu-
ter. A switch determines which section
of the program is run.

Primary loop
Out of the NMEA0183 frames pro-
vided by the GPS, we’re going to use
the RMC frame [4]. This frame contains
all the information we need: latitude,
longitude, time, date, and speed. After
decoding an RMC frame, we then need
to read the I²C memory. If we find a
location corresponding to our current
position – minus a certain margin, of
course, otherwise it’s too late! – that
means we are near a POI. In this event,
we leave our read loop and set off the
alarms, i.e. the sounder sounds, the
bi-colour LED light up red, and a mes-
sage is displayed on the LCD warning
of a POI close by.
Next time a GPS frame is received, we
start again and decode, read the I²C
memory, compare, etc.

Updating the database
The second section of the program is
used for updating the database via a
serial link. The transfer is initiated by
the PC which sends the character 13h
(19 in decimal) to the PIC, and the trans-
fer starts once the PC receives the same
character back. The PC then sends the
file to the PIC, which acknowledges
each character received by sending
the character 13h. When 128 charac-
ters have been received, the PIC writes
them into the I²C memory. To do this,
we’ve used the I²C routine available in
Flowcode, which makes it very easy to
use the I²C bus. The transfer ends with
a special character FFh, which is the
signal for the PIC to display on the LCD
the number of points stored in memory.
This number is also stored in the PIC
EEPROM, as we need it to be able to
get out of our comparison loop correctly
in the other section of the program.
For updating to be as fast as possi-
ble, it is done at 115,200 baud. But the
component routine is already config-
ured to 4,800 baud for dialogue with
the GPS. We have got round this prob-
lem by inserting a little bit of assem-
bler code into our program.
Another complication concerned the
interrupt used to detect the reception
of a character. The Flowcode library
does not include this interrupt, so we
had to create a user source for it.

Automatic backlight
One option that deserves to be men-
tioned here is the automatic adjust-
ment of the display backlight depend-
ing on the ambient light level. This
was easily achieved using the PIC’s
ADC, which measures the voltage
at the terminals of the light depend-
ent resistor (LDR), and a PWM (pulse
width modulation) output to control
the backlighting via a transistor. The
ADC and PWM are component rou-
tines included within Flowcode.

Simulation
Virtually the whole of the program can
be simulated in the Flowcode environ-
ment, except for the reception of the
characters during transfer of the file
containing the POIs, where we have
used some assembler code. Each com-
ponent of the project can be simulated:
the LCD, the PWM output, reading the
I²C memory, GPS frame reception, and
even the ADC for use with the LDR.

Figure 3. The speed camera warning device built using E-blocks. Our own E-block is the one with the sounder.

Figure 4. The full program is much too long to be shown
complete. So we’ll just give the most interesting part: the

detection algorithm.

projects e-blocks

26 elektor - 11/2008

To simulate decoding a GPS frame, we
need to input a GPS frame to the RS-
232 component module. We can then
see the reading of the memory in the
I²C routine, byte by byte.
The values of the variables can be
displayed (or changed), and simula-
tion can be performed in step-through
mode.

Circuit
Once our E-block prototype was
operational, we redesigned the cir-
cuit without the actual E-blocks (Fig-
ure 5) – the EB006 E-block has been
replaced by a 16F876A PIC (IC2) run-
ning at 20 MHz and the EB005 E-block
by a standard alphanumeric LCD with
backlight (LCD1) – the contrast can be

choose between normal and update
mode, and at the same time controls
the EEPROM write protection at the
same time.
The display is connected to PORT B of
the PIC in 4-bit mode. Input AN0 of the
ADC is connected to a potential divider
made up of R4 and the photoresistor
R5, which enables us to vary the dis-
play backlighting depending on the
ambient light level. The backlight is
adjusted by means of the signal on
one of the PIC’s two PWM outputs.
The other output is used to drive the
sounder. The bi-colour LED D2 uses
another two outputs of PORT A, RA3
and RA5.
EEPROM chip IC6 contains the posi-
tion of the POIs, each listed by lati-
tude and longitude to 6 bits. For our

adjusted with potentiometer R17. We
have eliminated the components that
are no longer needed, like the MAX232,
replaced the manual multiplexer by a
74HC241, and added photoresistor
R5.
The PIC connects to the I²C EEPROM
via its special I²C bus inputs SCL and
SDA. The GPS receiver and the USB/
RS-232 interface (IC3) are connected
to the PIC USART by way of the mul-
tiplexer IC4. In normal mode, the mul-
tiplexer connects the PIC RX input to
the GPS TX output to receive the GPS
frames. In I²C memory update mode,
the RX input is connected by the mul-
tiplexer to the TX output of the USB/
RS-232 converter. The PIC TX output
is directly connected to the RX input
of the convertor IC3. Switch S1 lets you

X2

6MHz

C7

22p

C8

22p

C13

33n

K2

VBUS

GND

USB-B

D–

D+

1

2

3

4

R11

47
0

Ω

R16

27Ω

R15

27Ω

R14

1k
5

C9

100n

VCC

R12

10
k

R13

15
k

24FC1025

IC6

SDA

SCK A0

A1

A0WP

1

5

8

4

6

2

37

VCC

R10

1k
8

R9
1k

8
C12

100n

FT232BL

PWRCTL

EEDATA

3V3OUT

RSTOUT

USBDP

USBDM

RXLED

TXLED

SLEEP

PWREN

TXDEN

V
C

C
IO

TEST

EECS

IC3

EESK

XOUT

AGND

A
V

C
C

RST

GND

V
C

C

V
C

C

GNDXIN

DCD

DSR

RXD

RTS

TXD

CTS

DTR

26

32

13

1727 28

2914

11

12

10

31

30

19

20

24

23

25

22

21

RI
18

15

16

1

9

3

5

2

4

6

7

8

080615 - 13

PIC16F876A

RA4/TOCKI

RA3/AN3

RB0/INT

RA5/AN4

RA1/AN1

RA0/AN0

RA2/AN2

RB3/PGM

RB6/PGC

RB7/PGD

RC6/TX

RC7/RX

MCLR

IC2

OSC2OSC1

RC0

RC3

RC4

RC1

RC2

RC5

RB1

RB2

RB4

RB5

20

10

28

27

26

25

24

23

22

21

11

12

13

14

16

15

17

18

198

1

9

3

2

4

6

5

7

C10

100n

VCC

X1

20MHz

C5

22p

C6

22p

D2

R2

220 Ω

R3

220 Ω

R1

10k
R4

3k
3

R5

NSL4960

K3

ISP

VCC

BZ1

KPEG110

VCC

LC DISPLAY 2 x 16

LCD1

V
S

S

V
D

D

R
/W

V
O

R
S

D
0

D
1

D
2

10

D
3

11

D
4

12

D
5

13

D
6

14

D
7

15 161 2 3 4 5 6

E

7 8 9

L
E

D
+

L
E

D
-

4k7

P1

VCC

T1

BC547

R17

68
Ω

R6

1k

VCC

74HC241DW

IC4

12

14

16

18

EN

19 EN

13

15

17

11

4

6

8

1

2

3

5

7

9

C1

22µ
50V

C2

22µ
50V

C4

100n

C3

100n

IC1
LM7805+12V

K1

vehicle
battery

D1

green

R7

22
0

Ω

VCC

R8

10
k

S1
PC/GPS

VCC

K4

EM-406A-2

VCC

red/green

IC4

20

10

C11

100n

VCC

EM-406A

IC5
PPS

GND

GND

VIN

RX

TX

6

5

3

4

1

2

Figure 5. The full circuit diagram of the speed camera warning device.

2711/2008 - elektor

project, we’ve chosen the 24FC1025
from Microchip, a 1,024 kbit memory
that allows us to store the position of
21,845 POIs.
The most expensive part in the whole
project is the EM406-A GPS receiver
module with built-in antenna from Glo-
balSat, already familiar to regular Ele-
ktor readers [4]. It interfaces directly to
a microcontroller via its ‘almost’ TTL-
level serial port.
The USB/RS-232 interface is taken care
of by an FT232BL IC from FTDI (IC3).
This forms the interface between the
PIC and the PC and requires a driver
to be installed on the PC in order to be
used as a virtual COM port.
And lastly, the project is powered via
a 7805 regulator.

Construction
It’ll take you just a few hours to build
this project. Refer to Figure 6 for the
board component layout. Note the use
of a ‘wire-wrap’ socket to bring the
display up to the height of the housing,
and the same for the bi-colour LED.
The first step is to solder the SMD
components. The FT232BL IC is the
trickiest, but with a very fine tip and a
bit of patience, it can be done (you can
use solder flux to help). The other SMD
components ought not to present any
real problem. Next, solder the discrete
resistors, non-polarised capacitors,
and then the electrolytic ones (observ-
ing the correct polarity carefully). After
soldering all these components, check
that the supply voltage is reaching the
ICs on the appointed pins.
Two .HEX files are available for pro-
gramming the PIC (see components
list). The executable called 080615-
11_2 can be used with downloaded
POI files directly. The 080615-11_1 file
requires a POI file sorted by increas-
ing longitude, which speeds up the
POI detection algorithm.
With the circuit powered and the PIC
programmed, the green LED D1 lights
and the display shows a start-up mes-
sage (depending on the position of S1).
If the display appears blank, adjust the
contrast using R17.

First steps
The first time the circuit is pow-
ered up, the EEPROM has to be pro-
grammed with a POI database. Close
S1 and connect the circuit to your com-
puter’s USB port. Never connect the
USB cable and the cigarette lighter
plug at the same time! Now’s the

16

+

-
1

6

USB-B
Socket

IC6

IC2 IC4

C5

C6

C9

C10

C7C8
C12

C11

R1 R2

R3

R4

R6

R1
1

R8
R9 R10 R1

2

R1
3

R15

R14

R16
X1

X2

K4

R7

C4

C3

C1

C2

K1

D1

R5
K3

T1

K2

BZ1

IC3

C13

LCD1

S1

R1
7

IC1

D2

P1

-B

Figure 6. Board component layout.

COMPONENTS LIST
Resistors
(0.25W 5%)
R1,R8,R12 = 10kΩ
R2,R3,R7 = 220Ω
R4 = 3kΩ3
R5 = NSL4960 (LDR)
R6 = 1kΩ
R9, R10 = 1kΩ8
R11 = 470Ω
R13 = 15kΩ
R14 = 1kΩ5
R15, R16 = 27Ω
R17 = 4kΩ7preset, vertical mounting
R18 = 68Ω

Capacitors
C5,C6,C7,C8 = 22pF
C1,C2 = 22μF 50V
C3,C4,C8-C12 = 100nF
C13 = 33nF

Semiconductors
D1 = LED, 3mm, green
D2 = LED, 3mm, bi-colour
T1 = BC547
IC1 = 7805

IC2 = PIC16F876A-I/SO, programmed,
Elektor SHOP # 080615-41

IC3 = FT232BL
IC4 = 74HC241DW
IC5 = EM406A GPS receiver (Sparkfun,

Lextronic)
IC6 = 24FC1025

Miscellaneous
X1 = 20MHz quartz crystal
X2 = 6MHz quartz crystal
LCD1 = LCD, general purpose, 2 lines,16

characters, with backlight
BZ1 = KPEG110 buzzer (Farnell)
K1 = cigarette lighter plug
K2 = USB-B socket
K3,K4 = 6-way SIL socket strip
S1 = switch, 1 pole, 2 positions
Enclosure, Hammond type 1591XXCBK

(Farnell)
PCB, Elektor SHOP # 080615-1
Project software: free download from www.

elektor.com/080615

projects e-blocks

28 elektor - 11/2008

moment to install the FTDI drivers, if
needed. Then, in the Windows ‘Device
manager’, set the speed of the vir-
tual COM port to 115,200 bits/s and,
under ‘advanced’ settings, change the
latency to 1 ms, then click OK.
Now run the Transfer.exe program (Fig-
ure 7), available on the web page for
this project. When the program starts,
you need to select the serial port used
by the FTDI IC driver (double-click on
the port, the window should close).
Click the ‘Run’button, then select
the file to be loaded into the EEP-
ROM. Click ‘Open’ to start the trans-
fer. You can follow its progress on the
PC screen. At the end of the update,
the circuit beeps and the display
shows the number of POIs
in memory.
Yo u c a n n o w
go over to GPS
mode: open S1
and reset the
circuit by briefly
interrupting the
power supply. As
soon as a GPS frame

Acknowledgements
Dominique Kerjean: design engineer at
ENSIETA.

Pierre Cambon: research lecturer at ENSIETA.

André Mininno: design engineer with
Multipower.

Internet Links
[1] www.totofweb.net/robots-projet-53.html

[2] www.ensieta.fr

[3] www.matrixmultimedia.com

[4] Multi-purpose GPS receiver, p.34, Elektor
363, September 2008

[5] www.poiedit.com

is received, the bi-colour LED will flash
green and the display will show the
position, alternating with the time and
speed. It may take a while to receive
the first frame from the GPS; the EM406
module has a red LED that flashes each
time the GPS receives a frame.
And there you have your POI warn-
ing device finished — safe journey,
and above all, remember to obey the
speed limits!

(080615-I)

About the author
Gilles Le Maillot is an electronics design engineer in the DTN department at the ENSIETA.

He is passionate about electronics and computers.

The ENSIETA (Higher National Engineering College) is a multi-disciplinary engineering col-

lege based in Brest, France. It trains mechanical, electrical, and IT engineers for all sectors of

industry (automotive, naval, aeronautics, and so on). The ENSIETA runs numerous research

and development programs within its four laboratories (DTN, E3I2, MSN, SHI).

Figure 7. The database is updated using the
Transfer.exe program.

