
projects automotive electronics

34 elektor - 4/2009

Automotive CANtroller
Car electronics exposed
Chris Vossen (Elektor Labs) and Ep Gernaat (Timloto, The Netherlands)

This universal microcontroller board was designed, in the first instance, for use by
students studying automotive technologies, but it can also be used for other applica-
tions, of course. The heart of this board is an Atmel AT90CAN32 with a fast RISC core.

Since cars contain an ever increas-
ing amount of electronics, students
learning about motor vehicle tech-
nology also need to know more
about electronics and microcontrol-
lers. In collaboration with the Timloto
o.s. Foundation in the Netherlands,
Elektor designed a special controller
PCB, which will be used in schools
in several countries for teaching stu-
dents about automotive technologies.
Particular attention was paid to issues
such as universal design, cost, con-
nection options, expandability and the
availability of free development soft-
ware for various platforms.

Technical Specifications
• Microcontroller: Atmel AT90CAN32
• Fast RISC -architecture with 133 instructions
• Clock speed: 12 MHz
• 32 KB flash, 2 KB RAM and 1 KB EEPROM available
• 53 programmable I/O lines
• Integrated CAN2.0 controller
• 8-channel 10-bit A/D converter
• SPI interface
• JTAG interface
• 2 USARTs
• Two-Wire interface
• 8 DIP switches and 8 LEDs available for experimental applications
• Power supply: 5 V

Cars and electronics
About 20 years ago, teachers of the subject of motor vehicle techno-
logy introduced the topic of microcontrollers into the curriculum of
automotive technicians. In those days they used a teaching kit that was
based on the Z80, which was appropriately named the Microprofessor.

This kit has been used intensively for at least 10 years, at the higher
grades of technician training and teachers united in the TIM working
group (TIM = Technical Informatics Motor Vehicles) have made many
automotive applications over the years.

However, at some stage a ‘real’ automotive microcontroller was selec-
ted, the Motorola 68HC11, which at that time was frequently used in
various automotive computers. The educational programs which were
originally developed for the Z80 were ported across and expanded. An
engineering consultant developed a 68HC11 controller board based
on the specifications from the TIM group. One of the prerequisites was
that the already developed Z80 hardware applications could be used
again. A textbook was written and the teachers were given further trai-
ning. Even now the 68HC11 is still used successfully as an educational
controller within the context of motor vehicle technology.

The TIM working group evolved into the Timloto o.s. foundation, a wor-
king group of teachers which sets itself the purpose of closely monito-
ring the technical developments in cars and make these available as
teaching resources to other teachers and students as soon as possible
and at no cost. New times, new opportunities: the Timloto website with
open-source licence became a fact. See www.timloto.org.

In the meantime the CAN bus became common and car computers
started receiving Flash memory upgrades while the cars were being
serviced. Again there was a call for a new(er) controller and this time
the editors at Elektor were approached for advice. The choice for the
Atmel AT90CAN32 was quite quickly made because of its reasona-
ble purchase price, the many features and the programmability under
Windows and Linux (Ubuntu). Thanks to the ingenuity of the Elektor
designers all the requirements from the Timloto specifications could be
met. The demands were considerable. Because Timloto works together
with another automotive teachers initiative (the ‘GoforAfrica’ founda-
tion) it also had to be possible to use the controller in technical schools
in Senegal and Gambia. The computers there run the Ubuntu opera-
ting system so that a Linux development environment was an absolute
requirement.

Costs also play an important role. The approach was to keep the cost
of the controller board as low as possible so that it could be added to

354/2009 - elektor

Automotive CANtroller
Car electronics exposed

A significant amount of teaching
material is already available, which
is freely available to anyone via the
Timloto website. You can therefore
also use this project at home. But the
design of this circuit is so universal
that it will also be excellent for all
kinds of other home, or should we say,
garage, projects.

Choice of microcontroller
When searching for a suitable micro-
controller we soon arrived at the
AT90CAN32 made by Atmel. This con-
troller is packed with many features. It

has 32 KB of Flash memory and 2 KB
of RAM. An EEPROM of size 1 KB is
also available. In addition to a 10-bit
A/D-converter with eight channels,
the controller also has multiple timers,
an SPI interface and two USARTS (one
of which is used as the programming
interface).

There is also a TWI interface and a
CAN2.0 controller. The latter makes
this controller eminently suitable for
applications in an automotive environ-
ment. The core of this controller has a
RISC architecture with an instruction
set consisting of 133 instructions.

The AT90CAN32 is available in both
64-pin TQFP and QFN packages. For
this design we choose the TQFP
version. This package type has all
the pins accessible around the out-
side edge of the package, which
makes it much easier to solder by
hand.

Finally we would like to mention that
this controller is completely com-
patible with its bigger siblings the
AT90CAN64 and AT90CAN128. For a
detailed description of all its features
(such as the TWI) we refer you to the
datasheet [1].

the book list of the automotive science stu-
dents and in this way each student also has
the opportunity to practise in his or her own
time. The switches in particular were a hurdle
initially. Eight toggle switches would increase
the price of the design considerably. A clever
Elektor solution was found by using a sepa-
rate expansion board for use in class, which
contains the switches. The module is plugged
into the expansion board. In this way, during
classes at school the robust switches on the
expansion board are available.

Using the first Elektor prototypes, members
of the Timloto working group could translate
the first (educational) 68HC11 programs into
AT90CAN32 assembly language. For this
purpose, use was made of AVR Studio 4 and
gcc-avr, avrdude and kontrollerlab for Linux.

The lesson materials are now organised in a
matrix and can be found at www.timloto.org/
nl/matrix/matrix_atmel.html

In the spring and autumn Timloto will or-
ganise training courses for automotive
technology teachers in Gambia, Senegal
and the Netherlands to show them the
educational use of the AT90CAN32. Tim-
loto aspires to international cooperation
between all (automotive) technical educa-
tion and would like to see as many people
as possible supporting this Elektor-Tim-
loto project. Help is required to translate
programs (comments and questions) into
English and French. Program ideas and
new applications are also very welcome.
Consideration can also be made to use the
C programming language instead of as-
sembly language.

We would like to appeal to teachers, elec-
tronics and information technology experts
to cooperate and develop things further, all
in the spirit of open-source.

projects automotive electronics

36 elektor - 4/2009

Schematic

The schematic for this module is a
relatively simple design (Figure 1).
The heart of the circuit is formed by
the AT90CAN32 (IC1). The Reset pin
is connected to an RC network (R1/
C3) which provides a reset when the
power supply voltage is turned on. S8

mum frequency.
To enable the CAN controller to com-
municate with a real CAN bus a CAN
transceiver is required. This can be
found on the schematic in the form of
a PCA82C251 (IC2). This IC is quite
well known by now and conforms to
the ISO11898-24V standard. This trans-
ceiver can therefore be used with both

provides the option of manually reset-
ting the circuit. A crystal of 12 MHz
is used for generating the clock fre-
quency. To use this crystal the con-
figuration fuses of the microcontroller
have to be programmed with the cor-
rect settings. Using AVR Studio, the
SUT_CKSEL bits can be configured for
an external crystal with 8 MHz mini-

23

XTAL1

24

XTAL2

22

GND

53

GND

63

AGND

(AD7)PA7
44

(AD6)PA6
45

(AD5)PA5
46

(AD4)PA4
47

(AD3)PA3
48

(AD2)PA2
49

(AD1)PA1
50

(AD0)PA0
51

(SS)PB0
10

(SCK)PB1
11

(MOSI)PB2
12

(MISO)PB3
13

(OC2A)PB4
14

(OC1A)PB5
15

(OC1B)PB6
16

(OCA0/OC1C)PB7
17

(SCL/INT0)PD0
25

(SDA/INT1)PD1
26

(RXD1/INT2)PD2
27

(TXD1/INT3)PD3
28

(ICP1)PD4
29

(TXCAN/XCK1)PD5
30

(RXCAN/T1)PD6
31

(T0)PD7
32

(RXD0/PDI)PE0
2

(TXD0/PDO)PE1
3

(XCK0/AIN0)PE2
4

(OC3A/AIN1)PE3
5

(OC3B/INT4)PE4
6

(OC3C/INT5)PE5
7

(T3/INT6)PE6
8

(ICP3/INT7)PE7
9

PF7(ADC7/TDI)
54

PF6(ADC6/TDO)
55

PF5(ADC5/TMS)
56

PF4(ADC4/TCK)
57

PF3(ADC3)
58

PF2(ADC2)
59

PF1(ADC1)
60

PF0(ADC0)
61

PG2(ALE)
43

PG1(RD)
34

PG0(WR)
33

PG4(TOSC1)
19

PG3(TOSC2)
18

RESET
20

62

AREFAREF

64

AVCCAVCC

21

VCCVCC

52

VCCVCC

PEN
1

(A8)PC0
35

(A9)PC1
36

(A10)PC2
37

(A11)PC3
38

(A12)PC4
39

(A13)PC5
40

(A14)PC6
41

(A15)PC7
42

IC1

AT90CAN32

X1

12MHz

C4

22p

C5

22p

GND

TXD
1

2

GNDGND

3

VCCVCC

RXD
4

VREF
5

CANL
6

CANH
7

RS
8

IC2
PCA82C251

1

2

3

4

5

6

7

8

9

11

10

K2

SUBD9

R10

12
0R

J1

R12

1k

GND

R11

10
k

C1

100n

C2

100n

GND

3 2

1

IC3
LD1117S50CTR

C8

100n

C9

100n

GND

+Vin

2

3
1

6..12V

K5

C6

47u

L1

C10

100n

+5VA

1 2

3 4

5 6

K1
MISO

RESET

SCK

GND

+5V

S8 C3

100n

R1

10
k

GND

+VCoreLED0

LED1

LED2

LED3

LED4

LED5

LED6

LED7

R9
330R

R8
330R

R7
330R

R6
330R

R5
330R

R4
330R

R3
330R

R2
330R

P1

10k

GND

+5V

PE7

PE2

PE3

PE4
PE5

PE6

PF0

PF1

PF2

PF3

PF4
PF5

PF6

PF7

+5V

PB7

PG3PG2

PG1PG0

PE7
PB0

PB4

PB5PB6

PD0

PD1
RXD1

TXD1PD4

PD7

PG0

PG1
PG2

PG3

PG4

TXD1
RXD1

PE2PE3

PE4PE5

PE6

PF2

PF1PF0

PB0

PB4

PB5

PB6

PB7

PF7PF6

PF5PF4

PF3

GND

JP1
PF0

+5VA

D1
MBRS130

C7

10u

R13

33
0R

LED8

K4

GND

K3+5V

+5V

SCK

MOSI

GND

L2

C11

100n

+5V

GND GND

+VCore

16
15

14
134

1
2

3
8

7
6

5 12
11

10
9

GND

PD0

PD1 PD4

PD7

PG4

RESET

+5V

TXD1RXD1

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16
17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32
33 34

K6

MOSI

MISO

1 2

3 4

5 6

K7

PB2

PB3

PB2

PB3

080671 - 11

S0

S1

S2

S3

S4

S5
S6

S7

RESET

Figure 1. The schematic for automotive CANtroller module.

374/2009 - elektor

Stepper motor control

The example below shows how a bipolar stepper motor can be
connected to the control module. Bipolar stepper motors contain a
number of windings which need to be driven according to a certain
pattern. In our example this is the following continuously repeating
pattern : 0101 1001 1010 0110.

In the initialisation routine of this example, Ports A and F are con-
figured as outputs. The stack pointer is initialised before any subrou-
tines are used. Port C is entirely configured as inputs, because this is
where the switches are connected. The switches are not used in this
example, however.

In the main program the four steps, one at a time, are continuously
written to Port F, with a small pause between each one. The stepper
motor will rotate as a result. When step 4 is completed the software
will begin again with step 1. The controller will repeat this pattern
over and over again.

The stepper motor is connected to the microcontroller using the fa-
miliar ULN2003A (see schematic). This IC contains a number of Dar-
lington transistors which can deliver sufficient current to get a small
stepper motor to turn.

The example program is available as a free download from the
Elektor website filed under number 080671-11.zip.

/*Program name: TESTPORTF.ASM
Program for de AT90CAN32 Elektor-Timloto board
Port F output
Port A output and drives LEDs
This program uses AVR Studio 4
The program runs from flash memory
*/

.DEVICE AT90CAN32

.INCLUDE “can32def.inc”;definition of ports
 are in a separate file

 RJMP RESET ;jump to starting address

/*INITIALISATION*/

RESET: LDI R16,$FF ;set all pins of Ports A and
 F to outputs
 OUT DDRF,R16
 OUT DDRA,R16

 LDI R16,high(RAMEND)
 OUT SPH,R16
 LDI R16,low(RAMEND)
 OUT SPL,R16 ;stack pointer initialisation is
 necessary for subroutine

 ;is not yet used here

 LDI R16,$FF ;activate the pull-up
 resistors
 OUT PORTC,R16 ;by writing ones the the
 output port
 LDI R17,$00 ;set all pins of Port C to
 inputs
 OUT DDRC,R17 ;not really necessary
 (default value)
 NOP

/* MAIN PROGRAM*/

BEGIN: LDI R17,0b00100010 ;0101 step 1
 OUT PORTF,R17
 OUT PORTA,R17
 RCALL WAIT1

 LDI R17,0b10000010 ;1001 step 2
 OUT PORTF,R17
 OUT PORTA,R17
 RCALL WAIT1

 LDI R17,0b10001000 ;1010 step 3
 OUT PORTF,R17
 OUT PORTA,R17
 RCALL WAIT1

 LDI R17,0b00101000 ;0110 step 4
 OUT PORTF,R17
 OUT PORTA,R17
 RCALL WAIT1

 RJMP BEGIN

/*DELAY SUBROUTINE*/

WAIT1: LDI R20,0x0F ;0F (01 for debugger)
WAIT: LDI R18,0xFF ;0x77 (01 for debugger)
AGAIN: LDI R19,0xFF ;0xFF (01 for debugger)
LOOP: SUBI R19,0x01
 BRNE LOOP
 SUBI R18,0x01
 BRNE AGAIN
 SUBI R20,0x01
 BRNE WAIT
 RET ;return to main program

I1
1

I2
2

I3
3

I4
4

I5
5

I6
6

I7
7

G
N

D
8

D
S

9

O7
10

O6
11

O5
12

O4
13

O3
14

O2
15

O1
16

IC1

ULN2003

PB7

PG3PG2

PG1PG0

PE7
PB0

PB4

PB5PB6

PE2PE3

PE4PE5

PE6

PF2

PF1PF0

PF7PF6

PF5PF4

PF3

GND

PD0

PD1 PD4

PD7

PG4

TXD1RXD1

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16
17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32
33 34

K6

PB2

PB3

+5V

+5V

GND

D1

R1

82
R

K4

+10V

080671 - 12

projects automotive electronics

38 elektor - 4/2009

12-V as well as 24-V systems.
Using sub-D9 connector K2
or pin header K7 it is poss-
ible to connect the board to
the CAN-bus. The pinout
of this connector cor-
responds with that of
the USB-CAN adapter
which was published
in our October 2008
issue.
Considering the educa-
tional character of this
project, the board is also
provided with eight switches (S0
to S7) and eight LEDs (LED0 to LED7)
which can be used when doing pro-
gramming exercises. There is also a
potentiometer (P1) on the board. You
can, for example, let the microcontroller
read the position of the potentiometer
and depending on the measured value
turn on a number of LEDs. You need to
fit jumper JP1 to connect the potentio-
meter to the microcontroller.

K4 is the familiar header for the USB-
TTL cable which we have used in sev-
eral earlier Elektor projects (080213-71,
see Elektor Shop).
The power supply for the circuit is
built around a classic design using a
LD1117S50. This is a linear low-drop
5-V regulator which requires very few
external components. With K3 you can
choose whether the circuit is powered

from the USB-connection or from volt-
age regulator IC3.
The PCB layout for the circuit is shown
in Figure 2. We won’t discuss the
details of assembling the PCB. Experi-
enced electronics enthusiasts are cer-
tainly capable of assembling this board
by hand, but most users would prob-
ably order the ready-made board from
Elektor instead.

Programming
In order to program the microcontroller
you need to have a programmer. You
can do this by, for example, connecting
the Elektor USB AVRprog to K1. This

programmer was featured in the
May 2008 issue. This pro-

grammer is still
available from
the Elektor Shop

(no. 080083-71).
For the program-

ming software you
can use AVR Studio

from Atmel [2]. This
is available as stand-

ard with an assem-
bler. Those of you who

are fond of C can use the
WinAVR open-source toolset

[3]. Bascom AVR [4] and Code-
vision [5] are a couple of com-

mercial alternatives. These have
evaluation versions available that you
can download.

The Automotive CANtroller module is
available from the Elektor Shop and
has the catalogue number 080671-91.
All SMD parts are already fitted on the
board. Only the through-hole parts
and the connectors still need to be
soldered.
Finally, a comment about the power
supply for the module. As you will
have noticed already, this can be pow-
ered from either the USB connection or
from a mains adapter. Make sure you
have the correct setting for the jumper
on connector K3.

(080671-I)

Internet Links
[1] www.atmel.com/dyn/resources/prod_doc-
uments/doc7682.pdf

[2] www.atmel.com/dyn/Products/tools_card.
asp?tool_id=2725

[3] http://winavr.sourceforge.net/

[4] www.mcselec.com

[5] www.hpinfotech.ro/html/cvavr.htm

COMPONENT LIST
Resistors
R10 = 120 Ω (SMD0805)
R2-R9,R13 = 330 Ω (SMD0805)
R12 = 1kΩ (SMD0805)
R1,R11 = 10kΩ (SMD0805)
P1 = 10kΩ potentiometer

(RK09K11310KB)

Capacitors
C1,C2,C3,C8-C11 = 100nF (SMD0805)
C4,C5 = 22pF (SMD0805)
C6 = 47µF 20V (CASE D)
C7 = 10µF 16V (CASE B)

Semiconductors
D1 = MBRS130 (SMB)
IC1 = AT90CAN32-16AU (TQFP-64)

IC2 = PCA82C251/N4 (SO8)
IC3 = LD1117S50CTR (SOT223)
LED1-LED9 = SMD LED (SMD0805)
X1 = 12MHz quartz crystal

Miscellaneous
JP1,JP2 = 2-way SIL pinheader + jumper
K1,K7 = 6-way DIL pinheader
K3 = 3-way SIL pinheader + jumper
K6 = 34-way DIL pinheader
K4 = right angled 6-way SIL pinheader
K5 = DC adapter connector
K2 = right angled 9-way sub-D plug

(male), PCB mount
S0-S7= one 8-way DIP switch
S8 = pushbutton
Kit of parts, contains SMD-prestuffed board

and all through-hole components. Elektor
Shop # 080671-91.

Figure 2. Component layout for the PCB that was designed for this circuit.

