CSQ-100 SERVICE NOTES

Memory caozcity --- Up to 168 notes (84 notes/channel) 2 channels
CV output -------- IV $1 \mathrm{oct}: \quad-2 \mathrm{~V}$ to +8 V
CV input ---------1V/oct: $\quad O V$ to +5 V
Gate output _--.-.- Off: OV On: +15V
Gate input ---.-- Off: $0 V$ On: +15 V (threshold +2.5 V)
EXT Start input .-. With switch: normally close, open to start or pulse: +15 V
EXC Step input ----- +15 V pulse
Power consumptions-- 8 watts
Dimensions -------- $345 \mathrm{~W} \times 305 \mathrm{D} \times 95 \mathrm{H} \mathrm{mm}(13.6 \times 12.0 \times 3.7 \mathrm{in})$
Weight ----------- 2.7 kg (5.94 lbs)

PANEL REMOVAL SCREWS: (1) through (8) ((7) (8) on the rear)

Switches SLE-522-18PS (001-26E
Panel H49 (072H049)
Swithes SLE-623-18P

Rubber bushings no. 20
(001-201)

Button no. 8 (016-003) Screws $3 \times 20 \mathrm{~mm}$ truss Br Screws $3 \times 6 \mathrm{~mm} \mathrm{Fe} \mathrm{Br}$ (11 places)

Pot.

EVHLWAD25B15 (030-951)

Switch
SSBO23-I2PN (001-183)

Switches w/ outton SCK41167 (001-276)

Switches w/button SCK41168(001-275) snecify legend for replacement order

$$
(068-020)
$$

Side blocks (R I set H21 (056H021)

Screws (1) (2) (3)
(4) Tap-tight binding he: Knob no. 57 (016-057) Pot. VMIORK2OB16 (020-76E

MIORK2OB16 (020-76=

Knob no. 33 (016-033) Pot. EVALOPC15A26 (029-57 Screws (5) 5 $3 \times 6 \mathrm{mn}$ Fe Br bindind

Switch

Designation		$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Function
$\begin{aligned} & \mathrm{DB} \\ & \text { (Data bus) } \end{aligned}$		12 13 14 15 16 17 18 19	
$\begin{aligned} & \text { P1 } \\ & \text { (Port 1) } \end{aligned}$	$\begin{array}{r} \mathrm{P} 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ \hline \end{array}$	$\begin{aligned} & 27 \\ & 28 \\ & 29 \\ & 30 \\ & 31 \\ & 32 \\ & 33 \\ & 34 \\ & \hline \end{aligned}$	RAM address RAM address LED timing Output CV S / H and Gate hold timing \qquad Metronome timing
$\begin{aligned} & \text { P2 } \\ & \text { (Port 2) } \end{aligned}$	$\begin{array}{r} \mathrm{P} 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ \hline \end{array}$	21 22 23 24 35 36 37 38	\qquad CV IN by-pass enable during the STOP mode Read switches status during switch scanning
RESET InT TO T1 XTAL 1 XTAL 2		4 6 1 39 2 3	Input to reset the 8048 when power is on External gate input Digital data input suting A-D conversion Accepts TEMPO clock output External source inputs for internal oscillator

- CIRCUIT DESCRIPTION

This descriptiom is divided into parts: the general description which explains roughly the functions of CSQ-100, and the detailed description which centers around A / D and D / A converters these are practically the heart in this instrument.
Complete unserstanding of A / D and D / A conversion circuits will aid in performing adjustments in Section II.

Function of " One chip computer" uFD8048

CSQ-100 performes its functions with uPD8048 at the center position for all, including the following in its performance cycles:

1. Switch Scaming
2. D/A Conversion
3. A / D Conversion
4. Write/Read of Data to or from External Rariu
5. Timing for lighting LED Indicator
6. Triggering of NETRONOME
7. Holding of GATE OUT
8. SWITCH SCANNING

μ PD8048 starts its running cycles beginning with switch canning. Into DBODB4 (Data Bus) of 8048, 5bit signals are being output according to the irternal program, which are then brought to the switch matrix through the buffer. At first, L is output from DB4 while having H from other DBO to DB3.
At the next instant, DB3
becomes to L while others change to H; and still next L on DB2 and so on, repeating such output changes 5 times on these bit signal combinations.
Depending on which key is depressed or in what position the switches are, corresponding signals are fed back through P24-P27 on Port 2.
9. D/A CONVERSION - Digital to Analog -

The D/A converter transforms the sequential data (switch scanning, RAM address, CVs, etc.) which are being output from the 8048 through internal programming, into analog voltages.
Since the D/A converter (DAC) employed here is a summing type, with a weight-resistor-tree connected to an inverting input of an OP amp, each bit in the digital data is converted to an analog voltage in value to double the one immediately subordinate to each. When CV data are on output, pulses synchronized to CV data are supplied from Pl5 of Port 1 onto the Sample and Hold (S/H) circuit, and the analog CV voltage equivalent to the data are held on Cl24. (details disccused later)

3. A/D CONVERSION (Analog to Digital)

Since the CV IN is an analog voltage,
it must be converted to digital data for making the storing in RAM possible.
The method employed in the CSQ100 is called "successive approximation conversion" where each bit, from DB6(for MSB;most significant bit) to DBO (for LSB; least significant bit), is being set successively to output "1"
 which, after being D/A converted, is to be compared with CV IN at the comparator (311). The comparator will then output "O" (low) if CV VDC, or "l" (high) if CV VDC, onto TO. When H is output to TO, the corresponding digital data is "reset" and becomes 0.
Such set and "reset" is repeated 7 times for bits from DB6 to DBO and with the resultant value from such "set" "reset" the digital data of the CV IN is produced.
4. DATA (CV and GATE TIME) WRITE/READ to RAM

In the external RAM, memory cells are selected by the signal made in combination of the address signals latched on 74LS273 by the instruction signal from ALE (Address Latch Enable) and those from PIl and PI3. The data (CV and GATB TIME) are written when $\overline{W R}$ is "low" and are read when it is "high".
 Although the data are in 8-bit format, they are written/read in two times separated to one-word-4-bit groups of lower and higher bits.

5. GATE HOLD

From DB7, the GATE signals are also being output.
They are held by the signal (the same as for S / H) to become output of GATE signal.

6. Lighting of ieds

Signals for lighting IEDs (except TEMPO) are supplied from DB. However, because there are many signals on $D B$ at every instance, timing pulses are given from Pl4 to control the LED circuits being fed oniy when there are output lighting signals.

The pulses are synchronized with those of TEMPO CLOCK GENERATOR and are output at the time rate one pulse for every eight CLOCK pulses. Because of this, lighting on/off cycling rate is also changed along with change in TEMPO, but the current amount to LED is still being kept unchanged through a means to maintain the duty ratio constant. filtered out by the integration circuit of R147 and Cll5 before arriving at LED, the longer pulses of 380 us only are used for lighting the TEMPO LED.

7. METRONOME DRIVE

In LOAD mode, two pulses synchronized to TEMPO are being output (in period 480 times the CLOCK pulse, in pulse widths of $14 \mu \mathrm{~s}$ and 380 us for alternate output). METRONOME amp is driven by both pulses but since the shorter pulses of $14 \mu \mathrm{~s}$ are

LOAD

Since in the CSQ-100, the key voltage which are analog quantum are first converted to digital for storing in RAM and again afterward are converted to ana=og for Cir OJT, these A / D and D/A conversions are just as important as the heart is to man
It might be said that without understandins of these conversion principles and pertinent analog vs digital data relationship, all adjustment services which are related to key voltage circuits become difficult to perform correctly.
With this in mind, our description will proceed along with the line as numbered in the figure on the left page.

1. In the CSQ-100, the CV storage range runs from $O V$ to $+5 V$, or 61 notes.
2. Due to the reason to be touched on later, the lowest CV which is provided by this CSQ-100 is $-2 V$. Therefore the digital data are made to correspond to $\infty=-2 \mathrm{~V}$.
3. The voltages that can be stored in RAM are 0 to -5 V , which makes the number of pitches to be 61 if taken in the ratio of IV/oct. Although, in handling them, 6 bits $\left(2^{6}=64\right)$ are enough, 7 bits would become necessary for the key voltage on the upper range if started from $O V=24$. For this reason, numbers 24 are being subtracted after conversion to digital form to make $O V=00$. (in decimal)
The key voltage to correspond to th tal value "l" is about 83.3 mV .
4. Reproduction of CV ir .. .-. 1

- TOAD or PT". . ADD "off") -
.................. D/A conversion is done after addition of 24 which is the same as subtracted before storing, into the data of RAM, the same digital analog voltage san be reproduced after D/A conversion.

CSQ-100 has the function to have a desired transposition of notes in PIAY mode by adding an external key voltage to the CV in memory. But, if transposition is required up or down, $K C V$ must be varied also up or down from the center referenced by the key which produces on this mode the same orginal tones in pitch from the Memory.
Also, because the CSR-100 has set this shift down range to be within 2 V , the key to produce $\mathrm{KCV}=2 \mathrm{~V}$ is made the reference key. For instarce, when $O V$ is stored in Memory, pressing a OV key, the lowest, will produce transposed output voltage -2 V . For this, the following must be true:

Digital data for $0 V$ stored in RAM (CV2 = 00)

+ KCV digital data of $O V(C V D 3=24)$
$=00(-2 \mathrm{~V})$

To satisfy the above, " CVD2 + CVD3 - 24 = output data"

RELATIONSHIP BETWEEN CV ADJ (VRIO6) and CV DATA
In LOAD mode and with the converter that is correctly adjusted, suppose that we turn VRIO6 (CV ADJ) slowly clockwise while holding IV key depressed on the keyboard. Ther you can observe holding lV key depressed on the keyboard. Ther you can observe
VDA (i.e. CV OUT) increases gradually, and likewise VDC (VDA - 41.7 mV) ascends along the dotted area as shown in Fig. 3.
That is to say, although the digital data is unchanged, the volt(VDA -41.7 mV) ascends along the dotted area as shown in Fig. 3 .
That is to say, although the digital data is unchanged, the voltage for that data is increased. But, still kept or turning VRl06 to have VDC overcome IV line for the digital data 36 as shown in Fig. 4, it causes the output of the comparator to be turned to "H" and the digital data re-written to 35 . Fig. 5 shows that state as being adjusted by turning VRIO6 clockwise to have CV OUT again to $1.0 c 0 \mathrm{~V}$.
Still turning VRl06 further will repeat the sare as above and to rewrite to 34.

But, when turnsd counterclockwise, the data will be rewritten to a larger number each time.

When watching this on a digital voltmeter connected for observation, the display will be as illustrated in Fig. 2. Now, suppose that we have turned VRIO6 a little too far to have the digital data 35 for CV IN of IV (as in Fig. 5). It is all right and causes no problem as lorg as we have KCV ADD turned off, because under these circumstance, any shortage or excess of voltage could be compensated for by biasing thru this CV ADJ. potentiometer. But once we have turned KCV ADD on, the whole matter would become different, to be expiained on next page.

WHEN DIGITAL DATA IS INCJRRECT, ERROR WILL BE PRODUCED on CV OJTT. with KCV ADD "ON"
laking for instance the case of each having CV IN IV converted into digital 35 (B ard C, table below) in place of 36 , we will explain as follows:

Note: The topmost numbers in the table refer to those on page 6 .

	MODE	2	3			6	7
		CVD1	$\begin{aligned} & \text { substrac- } \\ & \text { tion } \end{aligned}$	CVD2	addition.	$\begin{aligned} & \text { D } \frac{0}{\mathrm{~A}} \\ & \text { INPUT } \end{aligned}$	$\begin{aligned} & \text { CV } \\ & \text { OUT } \end{aligned}$
A	$\begin{aligned} & \hline \text { IOAD } \\ & \text { (normal) } \end{aligned}$	36	24	12	24	36	IV
B	$\begin{gathered} \text { KCV ADD } \\ \text { "off" } \end{gathered}$	35	24	11	24	35	IV
C	$\begin{gathered} \text { KCV ADD } \\ \text { "on" } \\ \text { * This } \\ \text { same } \\ \hline \end{gathered}$	35 is wh itch			*(CVD-24) 47-24=23 depressed V IN in m	34 o as ory	$0.9167 \mathrm{~V}$

Case B is when VRIO6 is adjusted to reprodece CV OUT of IV even if in earlier stage the digital data lacks 1.
In this case, since the numbers in preceding subtraction, and suibsequent addition are both the same (24), the analog amount at the output receives no effect to conversions.
In C, however, despite the fact that the KCV (being pressed) is converted to digital data number short of l, it is added to RAM-stored-data after subtracting 24. This means that there is a double shortage, bringing after all the shortage by 2 before D/A conversion prior to CV OUT. Through this D/A once again, 1 out of these 2 can be compensated for by VRlÓ, but there is still remained of 1 , which brings lack in pitch of a semitone ("I" in digital data) on tone reproduction. Thus, a maladjustment of VRIO6 produces a deviation on reproduction when played with KCV ADD "on". Or, it can be said conversely that, through fincing such deviation on analog voltage, it is possible to sheck digital data errors.

WIDMH ADJUSTVENT with VRIO5

This potentiometer $\mathbb{V R} 105$ is for use to correct the gain of ICll3 so as to have D / A in proper relation of $I V / o c t$, that is, when the data changes by $1, C V$ OUT changes by 83.3 mV .
When VR105 is required for readjustment, it may also be necessary to readjust VRI06, since turning either VR results in interaction between adjustments, therefore, both VRs need to be adjusted in turn.
Also care must be exercised to avoid an excessive turn of the VRs which will bring difficulty in performing this adjustment.

D/A ADJUSTMENT with VRIO4

This potentiometer is for the gain adjustment of the D / A amp, and it is in particular for DB6. This DB6 is for the data weighing the most significant bit, so its adjustment is the most critical one and warrants the careful attention. Sources of fluctuation and deviation such as those coming from the
 preceding stage of IC103, IClO4, on impedance or on output voltage, and resistance variation in resistor, etc. are to be compensated for by this VRIO4. Since the digital data that makes DB6 active is in number over 64 or 3.333 V in CV , fluctuation brought through DB6 data will effect all CV of higher voltages as shown in the figure. In practice, it will be best to adjust VRlO4 as follows: Set the LOAD mode and complete both $C V A D J$ and WIDTH ADJ, then, holding down the key for $4 V$. Set VRlO4 so that CV OUT equals 4.000 V .

LOAD (keyboard play)

Improvement on RESET SENSE
Increasing ClO4 capacitance from 1 mfd to 10 mfd may make RESET pulse more stable.

Note: $82 k$ is unnecessary when existing Cl06 is $0.47 / 50$

ADJUSTMENTS
The adjustment is composed of 2 parts: Section I and Section II.
It is recommended that the adjustment which is necessitated after the replacement of failing component or others are, as a rule, to be conducted as described in Section I.

Definitions

In this adjustment, the following terms have following meanings,
DVM --------------------- Digital Voltmeter
LOAD, PLAY, etc. --------- Key on the CSQ-100 control panel
2 V key, 3 V key, etc. ----- A key on the synthsizer being used, which provides that KCV
TEMPO, CAL, FAST, etc. --- Control, switch, jack, legend on the CSQ(capital letters) 100
SCOPE -------------------- Oscilloscope
CP1, CP2, etc. ---------- Check point on the PCB.

Note: Before attempting adjustment, warm-up period for no less than 10 minutes should be given.

CAUTION: Care must be taken not to turn the adjusting potentiometers excessively.

SECTION I

Adjustment is usually necessary only after replacing parts.

After replacement of	$\begin{aligned} & \text { Connect, - } \\ & \text { to } \end{aligned}$	Adjust or Check	for	(remark)
	Frequency counter, CP3	Ll01	$\begin{aligned} & 365 \mathrm{kHz} \pm 10 \mathrm{kH}_{z} \\ & \text { (8048 ciock frequency) } \end{aligned}$	
$\left\lvert\, \begin{aligned} & \text { IC110 } \\ & \text { (TC4011P) } \end{aligned}\right.$	$\begin{aligned} & \text { Scope, } \\ & \text { CP4 } \end{aligned}$		(waveform check)	
$\begin{aligned} & \text { IC111 } \\ & \text { (TC4049P, } \end{aligned}$	$\begin{aligned} & \text { Frequency } \\ & \text { counter, } \\ & \text { CP2 } \end{aligned}$	VR102 Clock Adj.	(Tempo clock frequency)$4.7 \mathrm{kHz} \pm 5 \%$ with TEMPO at FAST	
Check that frequency is $0.7 \mathrm{kHz}+5 \%$ with TEMPO set at SLOW. If this range deviates, readjust VR102 with TEMPO at FAST within the range of $4.7 \mathrm{kHz} \pm 5 \%$. Or, vary the capacitance of Clo9.				
	$\begin{aligned} & \begin{array}{l} \text { No connec- } \\ \text { tion at CV } \\ \text { IN jack } \\ \text { VV oür, } \\ \text { DVM } \end{array} . \end{aligned}$	$\begin{aligned} & \text { VR109 } \\ & \text { Offset } \end{aligned}$		
 IC112 (μ PD4558 $)$ 5. DI29 (1SZ59) 	$\mathrm{DVM}_{\mathrm{CPI}}$	$\begin{aligned} & \text { VR101 } \\ & -15 \mathrm{~V} \text { Adj. } \end{aligned}$	-15	

Note: Since any variation in the DC supplies will have the most pronounced effect on the DA converter, check CV OUT for error through the next steps (6).

$\begin{aligned} & \text { IC103, IClO4 } \\ & \begin{array}{l} \text { (TC4049) } \\ \text { IC113 (TLO82-P) } \end{array} \\ & \quad 6 . \end{aligned}$	CV IN, GATE IN, Synth's CV GATE out DVM, CV OUT	VR106 CV Adj.	(DA CAUT conv Alwa slow Will into atte time
Setting:			
	PORTAMENT on LOAD MODE MEMORY \qquad PLAY MODE \qquad	the syn \qquad \qquad	
	\qquad		

(Continuation of Step 6 from previous page)
6-1. Press RESET and LOAD.
$6-2$. Depress the 2 V key, DVM must read $2.000 \mathrm{~V} \pm 3 \mathrm{mV}$.
When DVM reads within 3 mV , adjust CALIBRATION pot for 2 CV OUT with PUSH CAL depressed. Then proceed to 6-3, 6-4.
If reading is outside $\pm 3 m V$ range, set CALIBRATION pot at center, and adjust VRI06 (CV Adj.) for $2.000 \mathrm{~V} \pm 3 \mathrm{mV}$ reading.

6-3. Verification of KCV ADD function While depressing the 2 V key, push PLAY. DVM must read the same.
A. If reading changes, it means that VRl06 (CV Adj.) has been set at incorrect point. Proceed to Section II
B. When the reading is steady, make sure that DVM readings are within the ranges in the table shown below with respective key depressed. (RESET-LOAD-2V key-PLAY-2V key-3V key-4V key)

key being depressed	DVM reading (CV OUT)
2 V	$2.000 \mathrm{~V} \pm 2 \mathrm{mV}$
3 V	$3.000 \pm 2 \mathrm{mV}$
4 V	$4.000 \mathrm{~V} \pm 2 \mathrm{mV}$

If any of the readings exists outside the limit, make asjustment under SECTION II, 1-6.

6-4. Press RESET and LOAD.
While depressing 4 V key, press PLAY.
DVM must read $6.000 \mathrm{~V} \pm 3 \mathrm{mV}$. If not, proceed to
SECTION II, 1-7.

1. ADJUSTING DA CONVERTER

Some procedures are the same as described under Section I.
In the following steps, adjustment should be made with specified key being depressed.
l-1. Connection and Settings: Follow the instruction "6" in Section I.
l-2. Press RESET and LOAD.
l-3. While depressing 2 V key, adjust VRI06 (CV Adj.) for 2.000 V reading. then, press PLAY.
A. If the reading stays unchanged, proceed to step 1-6.
B. If it changes, proceed to step l-4. (note the reading)

1-4. Press RESET, LOAD and 2 V key.
While depressing the 2 V key, adjust VRl06 for a following "2"V according to the deviation noted at step 1-3,B.
As discussed earlier (RELATIONSHIP, CV ADJ and DATA), DVM reading will repeat the cycle of $2 \mathrm{~V} \pm 4 \mathrm{lmV}$ as VRIO6 being turned. Ordinal number in the right colum of the table below shows number of repetition.

DVM reading at step I-3,B (approx)	Turn VRl06 in this direction	Stop turning when DVM reads 2.000 V of
2.083 V		
2.167 V	clockwise	lst
2.250 V	clockwise	2nd
1.917 V	clockwise	3rd
1.833 V	counterclockwise	lst .
1.750 V	counterclockwise	2nd

1-5. Press RESET, LOAD, 2 V key and PLAY. (2 V key held down) DVM must keep the same reading.
1-6. Press RESET and LOAD.

	key to be pressed	adjust	for reading	
1-61	3V	VR105 (WIDTH)	3.000 V	repeat until DVM reads
1-62	2V	VRIO6(CV Adj)	2.000 V	3.000 V and 2.000 V
1-63	4 V	VRI04(DA Adj)	4.000 V	repeat until respective
1-64	2V	VR106	2.000 V	voltages are displayed
1-65	3V	VR105	3.000 V	on DVM

MAY 31,1979

1-7. Press RESET, LOAD, 4V key (holding down) and PLAY. DVM should read $6.000 \mathrm{~V} \pm 2 \mathrm{mV}$.
1-8. If DVM proves that deviation is outside this range, it may be cured by turning VR105, but this adjustment will affect steps 1-64,1-65.
Turn VRl05 within the limit of $2.000 \mathrm{~V} \pm 2 \mathrm{mV}$ and $3.000 \mathrm{~V} \pm 2 \mathrm{mV}$.
2. CHECKING CV OUT With DVM connected to CV OUT and LOAD pressed. Check the DVM readings for IV/oct through entire keyboard.

View from panel side

VR106 CV ADJ and/or VRl06 might have been set too far from their proper position.
Reset them to the approximate positions illustrated in figure right. Adjust again from appropriate step.

VR105 WIDTH

VRI04
DA ADJ

$072 \mathrm{H049}$	Fanel H49
066 HO 21	Side block H21 set of I and R
$061 \mathrm{H080}$	Chassis H80
$068-020$	Bushing no.20 panel
$111-021$	Rubber Foot G-5 rear
$111-023$	Rubber Foot G-7 front
$016-008$	Button no.8 gray power switch
$016-057$	Knob no.57 TEMPO $016-033$
Knob no. 33 PORTAMENTO	
$063-012$	Strip no.12 knob no. 33

POWER TRANSFORMERS
022H024C 100V/117V
022HO24D 220V/240V

022-136 Coil 24M-067-033 47 $\mu \mathrm{H}$
009-012 Jack SG7622 no. 8 mono 068-018 Bushing no. 18 red jack 068-005 Bushing no. 5 jack 121-005 Washer no. 5 jack

FUSES

008-040 MGP 0.500 CSA prim 117V
008-061 SEMKO T315mA prim. 220/240V
008-056 SEMKO T100mA sec.
008-066 SEMKO TIA sec.
012-003 Fuse clip TF758

SWITCHES
001-215 SDG5P 001-1 power 100V
001-216 SDG5P 001-2 power 117V
001-217 SDG5P 502 power 220/240V
001-068 SLE-622-18PS lever
001-201 SLE-623-18PS lever
001-183 SSB-023-12PN slide
001-276 SCK41167 key
001-275 SCK41168 key

PCBs
149HO31D OPH31D (052H171D-1)
149H070D OPH70D (052H171D-2)
146 H 039 A PSH39A (052H172A) 100V
146 H 040 A PSH4OA (052H172A) 117V
146H041A PSH41A (052H172A) 220/240V
$048 H 017$ Heat sink H17 PSH-
042-039 Check point 59BS8806

POTENTIOMETERS

029-577	EVALOPC15A26 PORTAMENTO		2MA slide	
030-951	EVHLWA CALIBR	$\begin{aligned} & \mathrm{D} 25 \mathrm{Bl} 5 \\ & \text { ATION } \end{aligned}$	1001	
028-766	VMIORK	20B16	IMB	TEMPO
030-465	SRI9R	10 KB		trimmer
030-471	SR19R	100 KB		trimmer
030-644	RJ-6P	500B		trimmer
030-645	RJ-6P	1 KB		trimmer
030-646	RJ-6P	50 KB		trimmer

RESISTORS

$044-927$	CRA $\frac{1}{4}$ BY	11 K	0.1%	50 PPM
$044-932$	CRA $\frac{1}{4}$ BY	31 K	0.1%	5 CPPM
$044-929$	CRA $\frac{1}{4} \mathrm{BY}$	125 K	0.1%	50 PPM
$044-930$	CRA $\frac{1}{4} \mathrm{BY}$	250 K	0.1%	50 PPM
$044-972$	CRA $\frac{1}{4}$ DY	500 K	0.5%	50 PPM
$044-973$	CRA $\frac{1}{4}$ DY	1 M	0.5%	50 PPM
$044-838$	CRB $\frac{1}{4} \mathrm{FX}$	10 K	1%	
$044-846$	CRB $\frac{1}{4} \mathrm{FX}$	100 K	1%	
$044-860$	CRA $\frac{1}{4} \mathrm{FX}$	1 M	1%	

CAPACITOR

037-035 Disk seramic 0.1 mfd $+80 \%$ 12V

SEMICONDUCTORS
LSIs

179-028	μ PD8048C-028 8-bit microcomputer or μ PD8048C-077
	can be interchanged

020-202 μ PD2114LC RAM

ICs
020-203 SN74LSOON
020-204 SN74LS273N
020-120 SN74LS08N
020-040 TC4011BP
020-075 TC4049BP
020-199 μ PC3IIC
020-100 TL082CP
020-200 TL080CP
020-097 μ PC4558C
020-205 μ PCl4305 +5 V regulator
020-206 μ PC78L15 +15 V regulator
TRANSISTORS

$017-016$	2SK30A-GR	FET
$017-106$	2 SCl815-GR	
$017-024$	2 SA733-P	
$017-034$	2 SA682-Y	

WAFER TERMINALS, TERMINAL, WIRING ASSEMBLIES

010-195 Terminal 5046-05A
010-196 Ternimal 5046-07A
042-032 Terminal TT 501-D01 line cable
053H046 Wiring Assy A
053 H 047 Wiring Assy B
053H048 Wiring Assy C

MISCELLANEOUS

065H050 Dust cover H50
120-001 Long nut no. $13 \times 10 \mathrm{~mm}$
120-003 Long nut no. $33 \times 18 \mathrm{~mm}$ (stand-off or spacer)
012-043 IC Socket
ICCO30-040-350T (uPD8048)
064H076 Holder H76

064H055A Holder H55A
064H083 Holder H83

Commonly available parts:
Resistors of $1 / 4 \mathrm{~W}$, 5%, Mylars, Electrolytics are omitted.

LEDs
019-028 TLR-124 red
019-029 TLG-124 green
019-009 LR0601R red

