Vented Speaker

1: Detailed discussion of the principles

This is the first of two articles on vented speaker
systems. In this part the emphasis is on
understanding vented system operation and on
identifying factors which ensure a satisfactory
acoustic response of such systems at bass
frequencies. The second article will give simple
procedures whereby a suitable vented enclosure
may be designed for a given bass driver.
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BRIAN DAVIES* Australian National University, Canberra, ACT

Vented speaker systems, designed to extend the bass
response of a given woofer, have been around for half a
century. The first patent application was made by Thuras in
the US in 1930 but for the first 30 years or so the subject was
shrouded in mystery. There was no satisfactory theory which
would enable the synthesis of a suitable design, just a number
of recipes which were not always in agreement with each
other. In some quarters the vented system came to be called
the “boom box” and this description was certainly appropriate
to a system which | remember listening to in the 1950s.

During the 1950s, a number of papers were written which
together constituted the genesis of a theory. The crucial step
taken in these papers was to represent the acoustical
behaviour in terms of equivalent electrical networks to which
conventional circuit analysis could be applied. The big leap
forward was achieved by A. N. Thiele in 1961 when he used a
simplified model for which an exhaustive mathematical
analysis was possible. Having analysed the model, Thiele then
went on to identify a wide range of possible combinations of
woofer and enclosure which would lead to acceptable results.
He also showed how the system parameters could be
determined through measurements of the voice-coil
impedance, making it relatively easy to implement the
theories without recourse to an expensive acoustic
laboratory. A number of papers have been written since then,
notably by R. H. Small and P. ). Snyder. With the exception of
the latter, all of the various authors have used complicated
mathematics which is appropriate for only professional
engineers. As a result, their conclusions have remained
inaccessible to a larger audience. The purpose of these articles
is not so much to add to what has already been written in
other places, but to explain existing theories to non-
professional readers.

The method of this first article is to work from the simple to
the complex. For this reason only “ideal” systems are
discussed in this part, because they exhibit all of the features
which are necessary for an understanding of how vented
systems work.

Woofer characteristics

To understand the behaviour of an isolated speaker at low
frequencies, it is useful to regard the cone and voice coil
assembly as a rigid piston which is suspended from the frame
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by a spring. The springiness is provided by the spider which
centres the voice coil in the magnet and by the surround
which attaches the edge of the cone to the frame. The
assumption of rigid behaviour is generally good for
frequencies below 200Hz or so, which is the interesting area
when analysing bass performance.

When a mass is suspended by a spring, it has a natural
frequency of vibration. This may be observed by giving the
mass an initial displacement “and then releasing it. The
importance of this resonant frequency in the present context
is that it is relatively easy to make the mass vibrate at
frequencies near its resonance, For a speaker, the resonant
frequency is determined by the balance between the total
vibrating mass which includes a contribution from the air
moving near the cone, and the stiffness of the suspension,
From this, we can proceed to the following conclusions: (i) if
the mass is increased the resonant frequency decreases
because the system is more sluggish. (i) if the stiffness is
increased, the resonant frequency increases as a converse
effect. Thus the resonant frequency is a measure of the ratio
of stiffness to mass.

DISPLACEMENT (ARBITRARY UNITS)

TIME (AREITHARY UNITS)
Fig. 1

Suppose that we now connect the woofer to an amplifier,
which is turned on but to which no input is connected. If the
cone is displaced from its normal position and then released.
its subsequent vibrations will be damped, as shown in Fig. 1.
The chief cause of the damping is electrical. As the voice coil
moves in the magnetic field, it generates a voltage and this
causes a current to flow with magnitude limited by the
combined resistance of the voice coil, the connecting cables,
and the amplifier internal resistance. (In this article, we shall
assume that all resistances external to the voice coil are zero.)
This current, because it flows in a magnetic field, exerts a force
on the voice coil in a manner which damps the motion. The
other important factors contributing to the damping are
various frictional losses in the suspension. The effectiveness of
the damping is specified by a number, Q. Small Q
corresponds to heavy damping and large Q to little damping,
again as shown in Fig, 1.
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of operation

The purpose of the cone is not just to vibrate, but to
produce pressure variations in the air, which we regard as
sound. Because the movement of the cone simultaneously
produces low pressure on one side and high pressure on the
other, an unmounted speaker is not abpre to radiate low
frequencies effectively, due to pressure cancellation at the
long wavelengths involved. Mounting it in an enclosure brings
about a separation of the front and back waves, but it also
changes the stiffness of the suspension.

Let us now imagine that the woofer is mounted in an infinite
(ie, very large) box, often called an infinite baffle. We can then
consider its behaviour when we apply a sine wave through the
amplifier, varying the frequency but keeping the driving
voltage constant, The displacement amplitude of the cone will
be greatest for frequencies around the resonant frequency,
falling off on either side at the eventual rate of 6dB per octave.
Acoustic output is not equal to this amplitude, but to the
product of amplitude with frequency. This corrects the 6dB
per octave fall at frequencies above resonance, and turns the
rate below resonance into a 12dB per octave slope. Thus the
resonant frequency f, is also a fundamental cut-off frequency.
The response near resonance depends critically on the Q
value, and this is shown in Fig. 2 where a number of curves are
shown for different Q values, Two conventions have been
adopted in drawing these curves; (i) the 0dB level is the high
frequency limit. (i) frequencies are not given in Hertz, but as a
ratio with the resonance frequency (ie, /f;). Also shown in Fig,
2 is a dotted line representing the 12dB per octave bass roll
off. For typical high quality woofers Q is in the range 0.25 to
0.4, so it is seen that the infinite baffle arrangement leads to a
steady but inexorable roll off from well above the cut-off
frequency. This trend is often seen in manufacturer's
published response curves, which are for infinite baffle
conditions. It is interesting also to reflect that the purpose of
transmission line designs is to approximate infinite baffle
conditions in a reasonable size of box!

Ideal sealed box

Suppose that we mount the speaker in a fully sealed box.
This will prevent the back wave from escaping but it will also
increase the resonant frequency. To understand the latter
effect, remember that the vir)rations of the cone will
successively compress and rarify the air in the box. When the
air is compressed its pressure is raised above normal
atmospheric pressure, and the difference between the
pressures acting on the front and back of the cone acts as an
additional restoring force. In general the air in the box does
not act as a perfect spring, rather it introduces some
additional frictional forces which add to the damping. For the
present | shall assume that these effecis are negligible, and
acknowledge this assumption by calling the box “ideal”. Later,
| shall drop this assumption. Note also that the box acts as a
simple spring only if its dimensions are small compared with
the wavelength of the sound: this is no problem as the
velocity of sound is in excess of 300m/s, and our attention is
confined to low frequencies.

The stiffness of the box depends on the ratio of the area of
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MV Mk 2 20cm high-power woofer from Magnavox.
Vs = 67 litres; [, = 35Hz; and Q = 0.39.
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Fig. 2

the moving piston to the volume of the box: that is, it depends
both on the woofer and on the box. An important parameter
is the volume which the box must have so that its stiffness is
the same as the woofer's original stiffness. This quantity is
denoted by Vas, and it is essential to know its value leen
designing speaker enclosures. Since the box stiffness is
inversely proportional to the box volume, we may write the
following relationship between the box stiffness ks and the
woofer stiffness ks:
ks = ksVas/Vp (1)
For example, if the box has volume to one-third Vs, the box
will be three times as stiff as the woofer. The total stiffness is
the sum of ks and kg, since both restoring forces act in concert.
The effect of this on the resonant frequency is given by the
formula
fr = 27 (k/m)" (2)
where m is the total vibrating mass. This shows that the
resonant frequency increases in proportion ta the square root
of the stiffness. For a box of volume one-third Vas, the total
stiffness is increased by a factor four, and the resonant
frequency is doubled. More generally, if we denote the
resonant frequency of the woofer by fs and the resonant
frequency when it is mounted in a box by f,, we have
fo = fs |[(Va+Vas)/Va]* g}
In order to determine the acoustic output of the seal
enclosure we need to know the Q value of the woofer when it
is in the box. Now the damping is caused by frictional forces
and these are unaffected by the box. | have already stated that
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the resonance fs is related to the ratio of restoring force to
mass, through equation (2). Similarly, to find the effect of the
box on the Q) value, we need to know that the quantity f,/Q
measures the ratio of frictional forces to mass, at the
responant frequency. This is why small Q corresponds to high
damping. What happens when we mount the woofer in an
ideal box is that the ratio f,/Q remains constant while f, is
increased. For this reason we must distinguish between the Q
value of the woofer in isolation Qy, and tﬁe Q value when it is
in the box, Q.. The relationship is

fs/Qr = fo/Qa (4)
which shows that Q, is larger than Qy by the factor fu/fs. In
practice, when the chosen speaker enclosure is a sealed box
the volume is chosen so that Q, is close to unity. Since this
usually means that the box is many times stiffer than the
original suspension, this method of mounting is called
acoustic suspension.

Ideal vented box

In designing an ideal sealed box for a given woofer, there is
only one parameter which is at the disposal of the designer,
namely the box volume V. By using a vent or port in the box, a
second parameter is introduced. To see why, consider first the
vented box with the speaker cut out temporarily blocked in.
Such a system is known as a Helmholtz resonator, after the
scientist who investigated it last century. For the purpose of
designing the bass performance of a speaker system a simple
model is adequate. In this model, the air in the vent acts like a
mass and the air in the box like a spring: this is a resonant
system characterised by two parameters, fs and Qg. For the
rresenl, I shall assume that the box is ideal, so that Qg is very
arge and frictional forces fa/Qp negligible.

Now consider the vented system obtained by mounting a
woofer in this vented box. The simple models for the two
resonating systems may be combined into a new, composite
model. This has two moving masses, the cone and the vent,
each radiating sound as it vibrates. The cone assembly is
subject to forces from four sources: (i) signals applied to the
voice coil impress a force on the cone; (i) the woofer suspen-
sion provides a restoring force, acting between the cone and
the box itself; (iii) there are frictional forces characterised by
Qr; (iv) the air in the box provides a restaring force, only it no
longer acts between the cone and a rigid box, but between
the cone and the air in the vent. This latter force is the one and
only farce which is applied to the vent air mass, but it causes it
to vibrate and radiate sound as well as the cone.

The effect of coupling the two resonant systems via the
stiffness of the box is quite profound. The frequencies f, and fy
are no longer resonances; rather there are two new resonant
frequencies f and fiy. These frequencies may be calculated by
solving the equations.

fifiy = fefy (5)
ff+fd="Ff+f (6)

Formulas for the solution may be given, but they are not
important for understanding the acoustic response. However,
the reader may find it helpful to have one concrete example.
For one system built by the author, the values were
fi = 21Hz
fs = 35Hz
fg = 36Hz
f(l = 52Hz
fl-f = 59Hz
To understand the role of these frequencies, it is helpful to
think of a simpler coupled mechani::ﬁ system which is easily
visualised. Suppose we set up two identical pendulums, hung
side by side from a horizontal support. Each is a mass m
suspended by a light string of length £. The two masses are
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connected by a spring, whose mass is negligible compared
with m. With the connecting spring omitted it is possible to set
the two pendulums oscillating in unison by starting them in
identical manners. This must also be one of the two coupled
modes of oscillation since it would have no effect on the
length of the spring. The other mode has the two pendulums
moving in opposition to each other, and since the spring is
Eruviding extra restoring forces in this case, its frequency must

e the higher of the two. The general principle, which applies
to less symmetrical systems such as the vented speaker is that,
when two natural resonators are coupled, there are two
coupled modes of vibration. One of them, the lower resonant
frequency, minimises the effect of the coupling. The other, at
the higher resonance, maximises it.

In the present context, the lower resonant frequency f,
minimises the effect of the coupling between cone and vent.
In this mode, the cone moves out while the vent takes in air,
and vice versa, rather like a pump with a hole in it, and so there
is very little net acoustic output from this action. At the higher
resonant frequency fi; the effect of the coupling is maximised
because the cone and vent air move in and out together,
radiating constructively. The actual level of output is governed
by the damping at fi;, and here the effect of the coupling has a
second profound effect. To see this, recall that before the
coupling is introduced, only one of the two natural resonators
(the woofer) had any damping. However, both of the coupled
modes involve movement of the cone, and the frictional
forces represented by f/Qr have to be shared between the
two. Thus the Q value of the upper resonance is greater than
fuQrlfs, so that it is possible to achieve a damping factor of
unity for this mode without making fi/fs as large as the
corresponding ratio f./fs for the sealed box.

This is not the end of the story. At the box resonant
frequency fs, which is well below fyy, the vent will give a large
output without the cone making large excursions. The output
level of the vent is completely under the control of the driver
damping, even for an ideal box. Thus the vented system
works by employing the vent as an auxiliary radiator below
the frequency fu. For this reason fi is sometimes called the
cross over frequency.

Optimally flat response
Since the ideal sealed box is less complicated than the ideal
vented box, | will return to it briefly. Reference to Fig, 2
reveals that the response curves for Q, = 0.25 and 0.5 show
a steady fall in response with falling frequency, whereas those
with Q, = 1.0 and 2.0 have a peak. Regardless of the Q value,
the system is second order — it falls {J?f at 12dB per octave —
and the main features of the response are obtained by
drawing a straight line representing this 12dB rate. The details
of the curve near to resonance are controlled by the Q value,
and in this respect the value Q, = 0.707 is important. It is the
largest value that Q. may have without causing a peak, and
the corresponding response is known as optimally flat. The
response flimclion G(f) will be given in the next section, It is
not a complicated formula, but there is one frequency where
it is particularly simple, namely the resonant frequency f,,.
Here the formula is
G(fo) = Qo (7)

This shows that the optimally flat system is down 3dB at the
cut-off frequency.

For an ideal vented box the response formula is naturally
more complicated. The vented system is fourth order and falls
off at 24dB per octave. The crucial question is whether there is
an acceptable response curve joining these two straight lines.
For the analogous fourth order electrical network, it was
known that it is possible to achieve an optimally flat response
(no peaks —3dB at cut-off) before Thiele published his
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TRy #: OPTIMALLY FLAT THIELE
b : SEALED BOX WITH SAME VOLUME AS CASE a
c : OPTIMALLY FLAT SEALED BOX
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important paper. Thiele found that there is a unique choice of
parameters for the ideal vented speaker system which gives
the optimal response. This is the now-famous Thiele optimally
flat alignment and its response is shown as the solid curve in
Fig. 3. The Parameters for this alignment, including the cut-off
frequency f., are

Qr = 0.383

fg = fs
Vi = 0.707 Vas
fo=1fs

Obviously this alignment is only possible if a woofer is
available with the optimum Q7 value. Assuming that this is the
case, it is interesting to compare the results of using the same
woofer in a sealed box. First, if the volume of the box is given
by the Thiele alignment, then the cut-off frequency is f, = 1.55
fs with a Q. of 0.595; the low Q, means that the response is
—4.5dB at f,. Choosing an optimally flat sealed system raises
the cut-off frequency to 1.85 fs. The response curves for these
two choices are shown as dotted lines in Fig. 3. Note that the
frequency scale uses f/fs for all three curves, so as to enable
direct comparison of results.

Response functions for ideal boxes

It is not the purpose of this article to delve into mathematical
details. Nevertheless it is very useful to write down the
formula for the response function and spend some time
considering its interpretation. This will lead to an
understanding of how the response depends on the choice of
parameters Vg and fp. In the second article this information
will be turned round so that the parameters can be chosen to
provide practical designs. The formulas take on their simplest
appearance when we use the fundamental frequencies of the
system as the basic units. That is, frequencies will not be
ansolule (in Hertz) but specified as the ratio of the cut-off
fregt;ency to other important frequencies such as fs, fo, fg, f;
and 1y,

For a sealed box the cut-off frequency is simply the resonant
frequency of the woofer in the box, f,, for which a formula has
already been given in equation (3). The response function is

Glf) = 1/[(1 - f4f2) + faQaf]” ®)

The prominent feature of this formula is that it involves the
sum of two squares. Since the square of a number can never
be negative, the smallest value which either term may have is
zero and in fact the first term is indeed zero at the resonant
frequency f,. Thus the importance of this frequency is
apparent from a cursory inspection of the response function.
Another way of viewing this is that, if the response function is
derived in terms of the woofer parameters fs, Qr, Vas and the
box volume Vg, then we would immediately recover the
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formula for the resonant frequency f,, by observing that one of
the terms becomes zero at this frequency. The other point
which follows from equation (8) is that, when f is small, the
response function is well approximated by the ratio f2/f3, This
tells us that the system is second order and that f, is the cut-off
frequency.

For an ideal vented system (not necessarily the Thiele
?ptimlally flat alignment) the response function is given by the
ormula

R() = 1/ [(1-RIR)(1-f4/02) + (IQ) (1-ffy) 9)

This is more complicated than the sealed box response but
the interpretation of its major features is no more difficult.
The first point of interest is the cut-off frequency. This is
found by observing that for small values of f the response is
well approximated by the ratio f/fff, = f/f¥ff. [The second
form, with fifys replaced by fsfg follows from equation (5).] This
shows that the system is fourth order, and that the cut-off

frequency is
fe = (fofp)" (10)

The second point is that there are three frequencies where
one of the two squares in the response function becomes
zero, namely fi, fs and fi. At these frequencies the response
formula is simple in form and also of great interest.

Since the raison d'etre of the vent is to maintain response
down to the box frequency fg, even though the woofer itself
has ceased to make a useful contribution, it is natural to
calculate R(fs). Some simple algebra involving equations (3), (5)
and (6) gives the result

Gifs) = (fA/R)(Ve/Vas) (1)

In most practical vented designs ff/f2 is between one half and
two; moreover we shall see that the choice of this ratio
depends almost entirely the Qq value of the driver,
Consequently, this formula shows that once the woofer has
been selected and fg chosen, the response at fg is determined
by the size of the box. As an ‘example, with the Thiele
optimally flat alignment fg = fs while V = 0,707 Vs, so that the
resEonse is 3dB down at the box frequency.

The other important frequency is the cross over, fy;, Again
the response is easy to calculate, namely

Glfi) = (Qufufo) i/ (f—18)] (12)

In the Thiele oEtimally flat alignment the response at fy (=
1.76 f5) is less than 0.1dB down. Generally speaking, vented
systems are designed so that G(fy) = 1. Equation (12) shows
how the vent assists in achieving this objective. This is because
the factor Qrfi/fs, which is the damping predicted by the
application of the principle that Q/f, is a constant [see
equation (4) and the discussion there] is multiplied by /(3 —f3)
which is always greater than one. For the Thiele optimally flat
alignment, the values are

Qrfwlfs = 0.67

fAlfti—f) = 1.48

This illustrates one of the profound effects of coupling the
cone and vent. In this particular alignment, about two-thirds of
the woofer damping is applied to the upper frequency
resonance, with the other third applying to f,. This enables the
use of a larger box than the fully sealed design, which keeps
down the various natural frequencies to a minimum.

Conclusion

This concludes the first article which was concerned with the
principles whereby vented systems achieve their results, A
number of questions arise, wzich must be answered in order
to turn the principles into a set of design rules. They are:

}i) What effect does the box damping have on the response
unctions?
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GLOSSARY

Quite a few terms are used in this article and some of these
have not been defined. To help you keep track while reading
the article, we have compiled this glossary:

2 1e;onant frequency of a vented box with woofer cutout

sealed.

fe: cut-off frequency; the —3dB point on the system frequency

response curve beyond which the response usually falls at 12

or 24dB/octave,

fiu: upper resonant frequency of a vented speaker system. Also

referred to as the mechanical crossover frequency.

fi: lower resonant frequency of a vented speaker system.

:;,: resonant frequency of a woofer when mounted in a sealed
OX.

fx generalised term for resonant frequency.

f: resonant frequency of a woofer in free air.

kg: stiffness of air in a sealed box when acted upon by a

woofer,

kq: stiffness of a woofer suspension.

m : total vibrating mass of a system.

Q: figure of merit for a resonant system. A hig?h»Q figure refers

to an undamped system while a low-Q refers to a heavily

damped system.

Qq: Q of a vented box resonance with woofer cutout sealed.

Q.: Q of woofer resonance when mounted in a box.

Qn: Q of woofer resonance when in free air.

Vas: equivalent volume; the volume of air that offers a com-

pliance to the woofer that is equal to the compliance of the

woofer's suspension.

Vg: Volume of air in box.

(i) How can equations (11) and (12) be turned around so as to
tell us the appropriate values of fg and Vg for a given woofer?
(iii) How can the parameters fs, Qr and Vas be measured for a
woofer if they are not specified in the manufacturer's
literature?

iv) How do we choose the dimensions of the vent? ;
v) Having built a prototype, how can we check that its
critical frequencies accord with the theory, and if necessary
adjust the vent? _

All of these questions will be addressed, and answered, in the
second article.,
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