HIGH FIDELITY CLASS D AUDIO AMPLIFIER EVALUATION BOARD USING ZXCD1000 CLASS D CONTROL SYSTEM.

DESCRIPTION

The ZXCD1000EVMOL evaluation board is based on the ZXCD1000 Class D audio amplifier solution from Zetex. This board allows the user to evaluate the high fidelity audio performance offered by the Zetex solution.

FEATURES

- Class D architecture
- Single power supply
- Output power (Vsupply = 25V)
 50 W into 4 Ohms
 25 W into 8 Ohms
- THD + N <0.2% @ 90% power
- >90% efficiency
- Flat frequency response 20Hz 20 kHz
- Turn on / turn off pop suppression
- Noise floor -115dB

Note: The ZXCD1000EVMOL is intended as an evaluation platform for Zetex Class D solutions. Zetex accepts no liability for external equipment connected to the ZXCD1000EVMOL or any other form of consequential damage or loss.

INTRODUCTION

The ZXCD1000EVMOL is a 50W RMS (4-Ohm Load) high performance class D amplifier. The circuitry contains MOSFET devices and should therefore be handled appropriately.

The board requires a single rail power supply of 13 volts minimum and 25 volts maximum. Voltages in excess of 25 volts may cause permanent damage to the board.

The heart of the solution is the ZXCD1000 class D controller IC and the user should refer to the ZXCD1000 data sheet for further technical information.

1

CONNECTION AND OPERATION

The following PCB shows the connections required for correct operation of the ZXCD1000EVMOL evaluation board.

Power Connection

The ZXCD1000EVMOL requires a single positive supply voltage as follows: -

16V @ approx 2A for 25 W RMS into 4 ohms

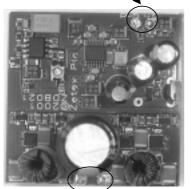
25V @ approx 3A for 50 W RMS into 4 ohms

Note: The connection points shown below

The supply must not exceed 25V and must not be less than 13 V to ensure correct operation of the amplifier.

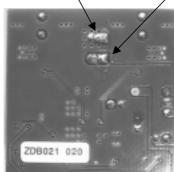
Audio Input

The ZXCD1000EVMOL requires a single ended audio input as follows: -


Input impedance 18K Ohms

Input signal level required for full output power is approximately 2.5 Volts peak to peak

Speaker connection


A 4 or 8 Ohm speaker load may be connected across the solder terminals shown above. Ensure the correct polarity is maintained to avoid phasing errors in the audio when using more than one board.

Audio Input

Speaker Connections

NOTE: The output of the ZXCD1000EVMOL is a Bridge Tied Load configuration and the speaker terminals must not be shorted together or to ground as this may result in permanent damage to the amplifier.

Note: C35 is included on the board assuming a 4Ω load however it should be removed when driving an 8Ω load

EVALUATION BOARD DESCRIPTION AND OPERATION.

The top copper, bottom copper and silk screen ID overlay are shown in figure 1,2 and 3.

The ZXCD1000 is available in a 16-pin ESOP package. The exposed pad on the underside of the package is soldered down to an area of copper on the PCB, to function as a heatsink. To further assist heat dissipation, the PCB has plated through vias connecting to an area of copper on the underside of the board.

Connections to the board are made by soldering wires to the on board solder pads. Connect the power supply leads to solder pads on the underside of the board (ensure correct polarity!), connect the audio input source leads to the solder pads labelled In and (the adjacent) Gnd, and connect a resistive/speaker load of 4/8 ohms between the two Speaker output solder pads.

The speaker is connected as a Bridge Tied Load (BTL). This means that both sides of the speaker are driven from the Output Bridge and therefore neither side of the speaker connects to ground. This allows maximum power to be delivered to the load, from a given supply voltage.

/

Power

Warning:

Neither side of the speaker outputs must be shorted to ground, Vsupply or to each other as this could damage the output bridge Mosfet's. One of the outputs could inadvertently be shorted to ground for example, by connecting the ground of an oscilloscope probe to one of the speaker outputs, whilst trying to view the output signal.

If it is wished to view or measure the signal across the load, a floating monitor must be used - for example a differential probe. Alternatively this may be achieved with a two channel oscilloscope monitoring the speaker A and speaker B outputs, and using the invert and add functions. For diagnostic purposes, the speaker outputs can be monitored single-ended with respect to ground with an oscilloscope (or other instrument) if desired. However any results obtained in this manner, are not valid for assessing performance. The true performance depends upon some differential cancellation across the speaker load.

The maximum supply voltage to the ZXCD1000EVMOL evaluation board is 25V nominal. A supply voltage of 25V will achieve 50W into a 40hm load and a 16V supply will achieve 25W into a 40hm load. The board is capable of driving an 8-ohm load with virtually identical performance, but the power will be 25W and 12.5W respectively.

The board is not rated at these powers continuously – more board area for heat sinking would be required.

The board requires an input signal of 2.5V pk-pk nominal to yield the full output power. This, as stated is supply voltage dependent. The input impedance of the board is nominally 18K ohm. This may attenuate the source voltage and may need to be allowed for, depending on the output impedance of the source.

The full power output voltage across the (bridge tied) load will be approximately 40V pk-pk with a supply

Figure 1. Top Copper for PCB

ZXCD1000EVMOL

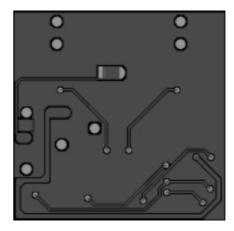


Figure 2. Bottom Copper

voltage of 25V, or ~28V pk-pk with a supply voltage of 16V. Viewing outputs single-ended will yield half these voltages. Smaller input voltages will yield smaller output voltages.

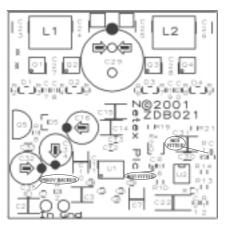


Figure 3. Component Overlay for PCB

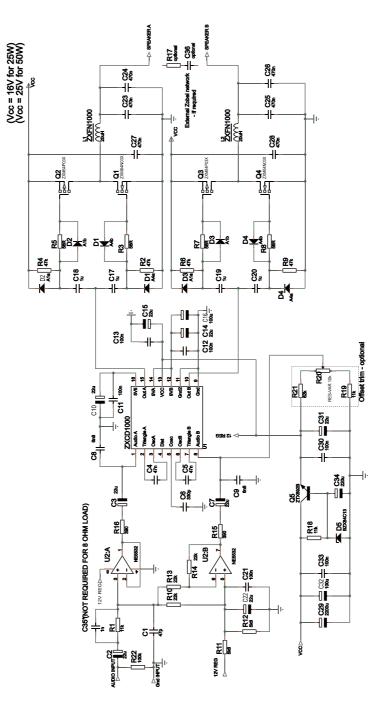
ZXCD1000EVMOL CIRCUIT DESCRIPTION.

Propriety circuit design and high quality magnetics are necessary to yield the high THD performance specified. At the heart of the circuit is the Zetex ZXCD1000 class D audio IC.

The ZXCD1000EVMOL circuit diagram is illustrated in figure 4. The circuit consists of a voltage regulator, an input phase splitter, the ZXCD1000 and an output bridge to drive the load - via L-C filters. The voltage regulator (Q5, D5 etc.) is necessary to drop higher supply voltages to a level suitable for the ZXCD1000 (~12V on the board). The input phase splitter, built around the NE5532 dual op amp, is necessary to drive the Audio A and Audio B channels on the ZXCD1000. The Output Bridge is built around the Zetex ZXM64P03X and ZXM64N03X PMOS and NMOS transistors. The ZXCD1000 outputs drive Output Bridge Mosfet's, with the PWM signal, which subsequently drives the load via L-C filters. The purpose of the latter is to low pass filter the high frequency switching PWM signal from the bridge. Thus the lower frequency audio signal is recovered and is available at the speaker outputs.

The more comprehensive description for the 25W open loop solution in the data sheet largely applies to the ZXCD1000EVMOL circuit and can be used for reference.

WARNING - Appropriate safety precautions should be taken by a competent person if the ZXCD1000EVMOL is to be connected to any potentially hazardous equipment.



ZETEX CLASS D MONO BOARD (ZXCD1000EV							
PCB ID	Value	Case	Notes				
R1	11K	SMD 0805					
R2	47K	SMD 0805					
R3	56R	SMD 0805					
R4	47K	SMD 0805					
R5	56R	SMD 0805					
R6	47K	SMD 0805					
R7	56R	SMD 0805					
R8	56R	SMD 0805					
R9	47K	SMD 0805					
R10	22K	SMD 0805					
R11	5K6	SMD 0805					
R12	5K6	SMD 0805					
R13	22K	SMPPD 0805					
R14	22K	SMD 0805					
R15	390R	SMD 0805					
R16	390R	SMD 0805					
R17	OPTIONAL - Not inc	cluded	Zobel Network - user dependant				
R18	11K	SMD 0805					
R19	11K	SMD 0805	Optional trim component				
R20	10K	SMD 3mm sq Pot	Optional trim component				
R21	62K	SMD 0805	Optional trim component				
R22	100K	SMD 0805					
C1	47pF 16V	SMD 0805					
C2	22uF 16V	SMD Tant B					
C3	22uF 16V	SMD Tant B					
C4	47n X7R 16V	SMD 0805					
C5	47n X7R 16V	SMD 0805					
C6	330pF COG 16V	SMD 0805					
C7	22uF 16V	SMD Tant B					
C8	6n8 16V	SMD 0805					
C9	6n8 16V	SMD 0805					
C10	22uF 16V	SMD Tant B					
C11	100n X7R 25V	SMD 1206					
C12	100n X7R 25V	SMD 0805					
C13	100n X7R 25V	SMD 0805					
C14	22uF 16V	SMD Tant B					
C15	22uF 16V	SMD Tant B					
C16	100uF 10V	std. Dia 5mm	Rubycon ZL series				
C17	1uF 16V X7R	SMD 0805					
C18	1uF 16V X7R	SMD 0805					

	ZETEX CLA	SS D MONO	BOARD (ZXCD1000EVMOL)
C19	1uF 16V X7R	SMD 0805	
C20	1uF 16V X7R	SMD 0805	
C21	100n 25V X7R	SMD 0805	
C22	22uF 16V	SMD Tant C	
C23	470n 50V X7R	SMD 1812	
C24	470n 50V X7R	SMD 1812	
C25	470n 50V X7R	SMD 1812	
C26	470n 50V X7R	SMD 1812	
C27	470n 50V X7R	SMD 1812	
C28	470n 50V X7R	SMD 1812	
C29	2200uF 25V	std. Dia 12.5mm	Rubycon ZL series
C30	100n 50V X7R	SMD 1206	
C31	22uF 16V	SMD Tant B	
C32	100uF 25V	std. Dia 6.3mm	Rubycon ZA series
C33	100n 50V X7R	SMD 1206	
C34	220uF 16V	std. Dia 6.3mm	Rubycon YK series (or Euro Chemi-Con)
C35	1nF 16V X7R	SMD 0805	(Remove for 8Ω load)
Note: C35	is piggy backed on top c	of R1	
C36			Zobel Network - user dependant
U1	ZXCD1000		
U2	NE5532	SMD SO 8	
Q1	ZXM64N03X	SMD MSOP 8	
Q2	ZXM64P03X	SMD MSOP 8	
Q3	ZXM64P03X	SMD MSOP 8	
Q4	ZXM64N03X	SMD MSOP 8	
Q5	ZTX692B E-line	TO92 compatible	
D1	BAV70	SMD SOT23	A4 - Common Cathode
D2	BAW56	SMD SOT23	A1 - Common Anode
D3	BAW56	SMD SOT23	A1 - Common Anode
D4	BAV70	SMD SOT23	A4 - Common Cathode
D5	BZX84C13	SMD SOT23	13V Zener diode
L1	PG0036 / ZXFN1000	20uH	Pulse / Zetex
L2	PG0036 / ZXFN1000	20uH	Pulse / Zetex
Note: Ref	er to zetex Web pages for	availability and alternativ	e sources

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purposes or form part of any order or contract or be regarded as representation relating to the products or services concerned. The company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

Some changes to earlier published data may have been made, data presented in this handbook supersedes all previous specifications. The information contained in this publication has been carefully checked and is considered to be accurate, but no responsibility is assumed for any inaccuracies.

Zetex makes no warranty, representation or guarantee regarding the suitability of the products and circuits in this publication for any given purpose; nor does Zetex assume any liability arising from the use or application of any of these products or circuits and specifically disclaims any and all consequential and incidental damages.

Zetex products are specifically not authorised for use as critical components in life support devices or systems without the express written approval of the Managing Director of Zetex plc. As used herein -

a. Life support devices or systems are devices or systems which

(1) are intended to implant into the body, or

(2) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labelling can be reasonably expected to result in significant injury to the user.

b. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

E. & O. E.

"all rights reserved"

ZETTEX Zetex plc. Fields New Road, Chadderton, Oldham, OL9-8NP, United Kingdom. Telephone: (44)161 622 4422 (Sales), (44)161 622 4444 (General Enquiries) Fax: (44)161 622 4420

Zetex GmbH	Zetex Inc.	Zetex (Asia) Ltd.	These are supported by
Streitfeldstraße 19	47 Mall Drive, Unit 4	3701-04 Metroplaza, Tower 1	agents and distributors in
D-81673 München	Commack NY 11725	Hing Fong Road,	major countries world-wide
Germany	USA	Kwai Fong, Hong Kong	© Zetex plc 2000
Telefon: (49) 89 45 49 49 0	Telephone: (631) 543-7100	Telephone:(852) 26100 611	
Fax: (49) 89 45 49 49 49	Fax: (631) 864-7630	Fax: (852) 24250 494	Internethttp://www.zetex.com
	()	() =	

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserve the right to alter without notice the specification, design, price or conditions of supply of any product or service.

