The DSP portion of the D2A processor has several memory areas that can be addressed through the I2C interface. Due to the 24 bit nature of the DSP, all data locations are 3 bytes in length. There are multiple code, data, and register locations within the DSP. The first byte of the register address determines what memory/register space the data is intended for; the next two bytes determine the offset into the memory/register location.
 The original array design uses two 8 channel modules. Each module utilizes two DSP cores with four class-D modulator per core. The I2C address for each core is determined through the DSP firmware and 1 GPIO pin. In each column, the DSPs are located at I2C addresses 0xB2, 0xB4, 0xB6, and 0xB8. The two memory spaces utilized in this application are 0x00 for register access and 0x04 for the FIR filter constants.
 Each DSP core is responsible for 4 PWM output channels and therefore contains 4 unique FIR filter locations.
 I no longer have the original source code to the VB GUI as part of my termination agreement with D2A so I cannot tell you the exact offset locations. You will need to review the VB code to determine the entries. I have obtained permission from D2A to release this information and if you wish, you can forward the original source code back for review here.
Communication to each array is obtained through the RS-422 interface. A dip switch on each array determines the devices address. The GUI has the capability to scan the system for all active arrays. Each 128 address locations are polled for an ID message. The returned Message identifies the array is active. Once addresses are identified, the GUI will poll each device for the location information stored in the eeprom.

During an initial installation, the installer must use the GUI to assign each column to its respective array. Once the assignments are completed, the arrays are logically combined into a column. The location of each array is updated in the eeprom in the onboard micro controller. The next time the system is scanned, the arrays will appear in their correct location in the GUI. A test tone is provided in the GUI to assist the installer in locating each array in the system.

After executing the FIR generator utility, the installer must upload the FIR constants to the array. Using the GUI, the file is selected and the constants are transferred to the array. Since the GUI now knows the physical location and respective address, each DSP core can be uniquely addressed.

All arrays are listening to the data transmitted from the GUI and or Canvas but will only enable their transmitter to the GUI when instructed. A serial command with the desired array address is transmitted to the array to enable its output transmitter. When this activation occurs, the micro will enable I2C communication with the DSP cores.
The Canvas utility for the RH program has a special entry to address a column, A special case serial command issued from Canvas enables the I2C address to be mirrored in each array in the respective column. Canvas is not aware of how many arrays compose a column and the column appears to be only 2 amplifier modules. This mode allows all EQ and volume settings to be equally applied to all arrays in the column. Once the Canvas utility has modified the ram locations, you must execute a save to eeprom command to store the results. The GUI automatically sends this command when uploading the FIR constants to each DSP core.
My understanding of commands from Array II. The D2Audio module communicates using I2C protocol.

1) The commands to write to FIR filters:

i) Device address + R/W

ii) Register Address [23:16]

iii) Register Address [15:8]

iv) Register Address [7:0]

v) Data [23:16]

vi) Data [15:8]

vii) Data [7:0]

2) The protocol to write FIR filters is

i) B2

ii) 04

iii) 06………0D

iv) 00……….D4

v) Data1

vi) Data2

vii) Data3

3) The commands are defined below to Read to FIR filters:

i) Device address + R/W

ii) Register Address [23:16]

iii) Register Address [15:8]

iv) Register Address [7:0]

v) Device address + R/W

vi) Data [23:16]

vii) Data [15:8]

viii) Data [7:0]

4) The protocol to read FIR filters is

i) B2

ii) 04

iii) 06…….. 0D

iv) 00…….. D4

v) B2

vi) <data>

vii) <data>

viii) <data>

Do we need to write to EEPROM everytime we write FIR filters? If so, is this the protocol to store to EEPROM:

i) B2

ii) 80

iii) 0
The load function only writes to the RAM locations. You must execute a save to eeprom after all four FIR filters are updated to the respective DSP core.

iv)
v)
vi)
vii)
viii)
How do we use Eklair to update firmware on D2audio module?

Where is the source code?

The only way we can communicate with D2Audio module is serial port/I2C port. What commands need to be sent to D2Audio module to update the firmware to RH customized firmware?
Updating the DSP firmware in this system is extremely cumbersome, but it can be done!

The DSP firmware uses a GPIO pin to determine if the DSP is an I2C master and load the EEprom or if the DSP is an I2C slave and load data directly into program memory. In either case, when the end of block sequence is received, the DSP begins execution. The BOOT pin is used to determine process at the rise of the reset pin. With this capability, an external micro or system can upload various utilities into the DSP.
The Eklair utility updates the DSP firmware in the following order:

#1 Uploads and executes a memory clear and test function
#2 Uploads and executes an eeprom erase function
#3 Uploads and executes an eeprom writer. The code is uploaded at this time.
#4 Uploads and executes an eeprom verifier.
#5 Uploads and saves to eeprom any register settings.

In the case where there are two modules in a system, the micro in the array and Eklair supports the use of individual BOOT controls to select each “module” independently. Note: Only one set of firmware upload is required for each pair of DSP cores.
So here is what you have to do to:

#1 Execute a VB utility that selects (enables through the serial command) the individual array
#2 Exit and Run Eklair to update the firmware in each “module”

#3 repeat 1,2 until all Arrays are completed
Now for the difficult part! Canvas and Eklair will ONLY communicate through the serial protocol and are only designed to communicate through a logical COM port. The RH system and the USB interface on D2A’s evaluation platforms appear as logical COM ports. So no matter what your new hardware is, you need to communicate through a serial COM device.
D2A has made it quite clear that the source for Canvas and the source for Eklair are company confidential and will not be available even under a NDA agreement. I will discuss generating a .dll with D2A that would allow you to update your firmware without violating their IP concerns.
