C. Sanjay # 120W+120W Stereo Amplifie 120W stereo power amplifier is not so loud when the area which the amplifier must 'cover' is large, though its rating leads one to imagine the contrary. This amplifier is particularly suited to those who conduct music concerts. It is also suitable for use in auditoria. But it you already have something like a 70W + 70W amplifier, there isn't any meaning in making this amplifier. After all, there is hardly any difference between a 70W amplifier and a 120W amplifier as regards power; less than 3dB difference is barely audible. But then, it all depends on where you use it and how you use it. This amplifier delivers an output of 120W RMS into a 4-ohm speaker. Those who wish to connect more than one speaker can do so by connecting two 8-ohm, 60W speakers or four 16-ohm, 30W speakers in parallel. ### The circuit Fransistors 11 and 12 form a differential pair and 19 forms their constant current source. The input stage is not a purely differential stage as can be seen. Transistors 13 and 14, along with 11 and T2, form a sort of cascode-differential pair. The currents at the collectors of T3 and 14 are always constant, except when the signal is present. The cascode arrangement makes it possible to use low voltage transistors at the input. This is very necessary since high voltage transistors are often short of gain. Transistor 15 acts as an emitter-follower for the collector load of T3. This transistor operates at a collector-to-emitter voltage of 5V. 16 is the class-A driver and T8 provides the constant current source. T7 acts as the V<sub>B1</sub> multiplier and also compensates for temperature changes. The output stage is made of three transistors on each side. Diodes D5 and D6 help to maintain the symmetry. R31. C10 and C11 form the usual zobel network, to suppress spurious oscillations at the output. The 1-ohm, 1-watt resistor (R32) and inductor L1 at the output are necessary only if any capacitive loads are likely to be used. The fuse protects the speaker from any damage due # SPECIFICATIONS CHART Output power : 120W into 4-ohms load (1HD=0 | per cent) Input sensitivity . 820 mV to IV (for 120 W) . ≥70 dB Signal-to-noise ratio (at Po=100W) Current consumption : 15A, channel (DC) €01% Distortion at 200 mW output to DC appearing at the output in the event of a failure in the circuit. The protection circuit, given in Fig. 5, is not compulsory and can be done away with, if you don't need it. Even when the output goes to Vcc—the saturation voltage of T12 (or VCC, i.e. the saturation voltage of T15), the power dissipation in the output transistor amounts to a mere 40W at the maximum. The output transistors can withstand 150W (max.). The maximum power dissipation in the transistors occurs when the output is halfway between 0V and Vcc (or -VCC). In this case, it occurs at 20V, or at 100W. The Fig. 1: Circuit diagram for 120W + 120W stereo amplifier. ## **PARTS LIST** | Semiconductors: | | R17, R19 | 470-ohm | |----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------| | T1, 12 | - BC147C npn AF transistor | R21-R30, R32 | 1-ohm, TW carbon | | 13, 14 | - C1L603 npn AF transistor | R31 | 3.9-ohm, IW carbon | | T5 | - BC158B pnp AF transistor | R34, R37 | 2-kilohm | | Т6, Г13 | - BD140 pnp low-power transistor | R35, R36 | l-kilohm | | 17, 116<br>18, T10<br>19<br>T11, T14<br>T12, T15<br>T17<br>D1, D2<br>D3-D6 | BC147B npn AF transistor BD139 npn low-power transistor C1L612 npn transistor 2N6261 npn driver transistor 2N6254 npn power transistor BC157 pnp transistor 5.6V, 400mW zener diode 1N4148 silicon switching diode | Capacitors:<br>C1, C4<br>C2, C8<br>C3<br>C5, C6<br>C7 | 47μF, 63V electrolytic 10μF, 10V electrolytic 0.22μF, 100V ceramic 25μF, 50V electrolytic 200μF, 6V electrolytic 100pF styroflex | | D7-D10 | 2SM15, 15-amp rectifier diode | C10, C11<br>C12 | 0.1#F , 100V ceramic disc<br>39pF styroflex | | Resistors (all ¼ wards) R1, R10, R33 | att, ±5% carbon, unless stated otherwise): 3.3-kilohm, ½ watt carbon | C13, C14<br>C15, C16 | - 0.01#F, ceramic disc<br>- 10000#F, 100V electrolytic | | R2, R9 | 47-kilohm | Miscellaneous: | | | R3, R4<br>R5, R6, R16, R18 | 1.2-kilohm | LS<br>L1 | Loudspeaker (see text)<br>See text | | R20 | 100-ohm | XI | 33V-0-33V, 10-amp secondary transformer | | R7 | - 1.8-kilohm | S1 | SPDT switch | | RII | 680-ohm | FI | 6-amp fuse with holder | | R8 | - 390-ohm | F-2 | - I-amp fuse with holder | | R12, R15<br>R13<br>R14 | 22-ohm<br>4.7-kilohm<br>820-ohm | | PCB, heatsink, coaxial cable, capacitor clamps, hardware, BNC plug/socket, enclosure, mains lead etc. | dissipation in the output transistor is then 100W. The transistor can, of course, withstand this. The use of an output coupling capacitor is eliminated by using a symmetrical power supply. To connect this amplifier to a crossover network, be sure that the capacitors in it are non-polarised. 79 Fig. 2: PCB layout for 120W + 120W stereo amplifier. 80 ELECTRONICS FOR YOU Fig. 3: Components layout for 120W + 120W stereo amplifier. Fig. 4: Suggested power supply for the circuit. **Details of the Power Supply Components** | Components | Mono | Stereo | |-------------------------------|--------------------------------------------|-----------------------------------------| | Fuse (F2) | 11 | 2A | | Capacitors C18 and C16 | 5000μ F | 10000#1- | | Diodes D7 to D10 | | | | Current(PIV = 200V) | 6A | 124 | | fransformer | | | | Se ondary Current | 5A | 10A | | Core Size | Longue Width 6,25 cm<br>Stack height: 5 cm | Tongue Width 7.5 cm Stack height 7.5 cm | | No of turns in<br>Primary SWG | 4601 23 SWG | 2561 20 SWG | | of turns in<br>Se ondary/SWG | 661+661 '17 SWG | 371+371 15 SWG | Fig. 5: Short circuit protection network. #### Construction The wiring should pose no problem if the PCB whose pattern is shown in Fig. 2 is used. When soldering components, solder all the resistors, except R21-R30, first. Then solder the capacitors and finally the transistors and the resistors R21-R30. There is no specific reason for this sequence. It is just that low-profile components should be mounted first. It will be easier to solder them in this sequence. If soldering all the resistors R21 to R30 side by side poses any problem, first solder three resistors on each side and then solder the other two on top of them, on each side. Transistors T11 and T12 can be mounted on the same heatsink. The same goes for T14 and T15. The heatsinks must be of 1.20C/W type. Use of silicon grease is advisable. The heatsinks for 16 and 18 are made by bending 1.2mm thick, 3cm × 2cm pieces of aluminium in 'L' shape. The longer arm of the 'L' should be screwed to the transistor and the shorter to the PCB. Only then should the transistors be soldered. The fuse that is connected in series with the speaker can be fixed at the back panel of the amplifier. These fuses must be of quick blow type. All wiring must be made with 18SWG tinned wire or flexible wires that can carry currents up to 6A. Use separate power supply wires for each channel and separate speaker return leads. #### Adjustments After checking the wiring, turn VRI clockwise fully or set to maximum resistance. Now connect a voltmeter, capable of reading millivolts, across the resistors R21-R25. Switch on the amplifier and adjust VRI so that the meter shows 6 to 10 mV This is the only adjustment required. Connect a tape recorder or a tuner through a suitable preamplifier and tone control amplifier to enjoy the music Note: A suitable preamplifier designed and developed at EFY lab to go with this power amplifier will be published in the next issue to enable a complete hi-fi stereo amplifier system. # **EXPORT HOUSES May Please Contact** ELECTRONICS FOR YOU, India's most popular electronics magazine, is now on the lookout for markets abroad. There appears to be a good scope for this magazine in some neighbouring, Eastern, Western and Arab countries—as indicated by the enquiries received from time to time. Export Houses having contacts in these countries, particularly with distributors of books and magazines, are requested to write at the earliest to: MANAGING DIRECTOR **EFY Enterprises Pvt Ltd** 605, SIDDHARTHA, 96 NEHRU PLACE NEW DELHI 110019. **ELECTRONICS FOR YOU** 82