Active Noise Control Using LMS & NLMS Algorithm

Desai Nilay¹, Pandya Utpal², and Desai Chintan³

Chhotubhai Gopalbhai Patel Institute of Technology, Bardoli, India nilay.desai@utu.ac.in, xyz, desai.chintan@utu.ac.in

Abstract. Active filtering is a wide area of researcher in present decade in the field of communication. Active noise cancellation is a new approach used for noise reduction in speech signal. As received signal is continuously corrupted by noise where both received signal and noise signal both changes continuously, then this arise the need of active filtering. This paper deals with cancellation of noise on speech signal using two adaptive algorithms least mean square (LMS) algorithm and NLMS algorithm. And compare them for better performance and provide efficient performance with less computational complexity.

Keywords: Active noise control (ANC), LMS Algorithm, NLMS algorithm, Adaptive filtering.

1 Introduction

Acoustic noise problems becomes more pronounce as increase in number of industrial equipment such as engines, transformers, compressors and blowers are in use. The traditional approach to acoustic noise cancellation uses passive techniques such as enclosures, barriers and silencers to remove the unwanted noise signal [1][2]. Silencers are important for noise cancellation over broad frequency range but ineffective and costly at low frequencies. Mechanical vibration is a type of noise that creates problems in all areas of communication and electronic appliances. Signals are carriers of information, both useful and unwanted. Extracting or enhancing the useful information from a mix of conflicting information is a simplest form of signal processing. Signal processing is an operation designed for extracting, enhancing, storing, and transmitting useful information. The another approach is the time domain approach in which directly signal is thresholded so noise is removed from the signal. But the time domain methods are not efficient. Hence signal processing is more useful. In contrast to the conventional filter design techniques, adaptive filters do not have constant filter coefficients and no priori information is known. Such a filter with adjustable parameters is called an adaptive filter. Adaptive filter adjust their coefficients to minimize an error signal and can be realized as finite impulse response (FIR), infinite impulse response (IIR), lattice and transform domain filter [4]. The most common form of adaptive filter is the transversal filter using least mean square (LMS) algorithm and NLMS algorithm.

In this paper, noise is defined as any kind of undesirable signal, whether it is borne by electrical, vehicle, acoustic, vibration or any other kind of media. In this paper, adaptive algorithms are applied to different kind of noise.

The basic idea of an adaptive noise cancellation algorithm is to pass the corrupted signal through a filter that tends to suppress the noise while leaving the signal unchanged. This is an adaptive process, which means it does not require a priori knowledge of signal or noise characteristics. Active noise cancellation (ANC) efficiently attenuates low frequency noise for which passive methods are ineffective. Although both FIR and IIR filters can be used for adaptive filtering, the FIR filter is by far the most practical and widely used. The reason being that FIR has adjustable zeros, and hence it is free of stability problems associated with adaptive IIR filters that have adjustable poles as well as zeros.

2 LEAST MEAN SQUARE ALGORITHM

To make exact measurements of the gradient vector at each iteration n, and if the step-size parameter is suitably chosen then the tap-weight vector computed by using the steepest descent algorithm would converge to the optimum wiener solution. The exact measurements of the gradient vector are not possible and since that would require prior knowledge of both the autocorrelation matrix R of the tap inputs and the cross correlation vector p between the tap inputs and the desired response, the optimum wiener solution could not be reached [3]. Consequently, the gradient vector must be estimated from the available data when we operate in an unknown environment.

After estimating the gradient vector we get a relation by which we can update the tap weight vector recursively as:

where $\mu = \text{step size parameter}$

$$\mu^{H}(n) = Hermit \ of \ a \ matrix \ \mu \tag{1}$$

We may write the result in the form of three basic relations as follows:

1. Filter output:

$$y(n) = w^{H}(n)u(n) \tag{2}$$

2. Estimation error or error signal:

$$e(n) = d(n) - y(n) \tag{3}$$

3. Tap weight adaptation:

$$w(n+1) = w(n) + \mu u(n)e^*(n)$$
(4)

Above equations are define the estimation error e(n), the computation of which is based on the current estimate of the tap weight vector w(n). Note that the second term, $u(n)e^*(n)$ on the right hand side of equation represents the adjustments that are applied to the current estimate of the tap weight vector w(n). The iterative procedure is started with an initial guess w(0). The algorithm described

Desai Nilay Pandya Utpal Desai Chintan

by above equations is the complex form of the adaptive least mean square (LMS) algorithm. At each iteration or time update, this algorithm requires knowledge of the most recent values u(n), d(n) & w(n). The LMS algorithm is a member of the family of stochastic gradient algorithms. In particular, when the LMS algorithm operates on stochastic inputs, the allowed set of directions along which we step from one iteration to the next is quite random and therefore cannot be thought of as consisting of true gradient directions.

3 NOISE CANCELLATION

Fig. 1 shows the basic problem and the adaptive noise cancelling solution to it. A signal s is transmitted over a channel to a sensor that also receives a noise n0 uncorrelated with the signal. The primary input to the canceller is combination of both signal and noise s+n0. A second sensor receives a noise uncorrelated with the signal but correlated with the noise. This sensor provides the reference input to the canceller. This noise n1 is filtered to produce an output y that is as close a replica of n0. This output of the adaptive filter is subtracted from the primary input to produce the system output would be signal alone. But the characteristics of the transmission paths are unknown and are not of a fixed nature, due to this use of a fixed filter are not feasible.

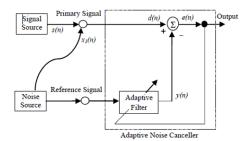


Fig. 1: Active Noise cancellation Concept

In Fig. 1 the reference input is processed by an adaptive filter. An adaptive filter is that which automatically adjusts its own impulse response. Adjustment is accomplished through an algorithm. The filter can operate under changing conditions and can readjust itself continuously to minimize the error signal [6].

In noise cancelling systems the practical objective is to produce a system output that is a best fit in the least squares sense to the signal s. This objective is accomplished by feeding the system output back to the adaptive filter and adjusting the filter through an LMS adaptive algorithm to minimize total system output power. In an adaptive noise cancelling system, the system output serves as the error signal for the adaptive process.

The prior knowledge of the signal s or of the noises n0 and n0 would be necessary before the filter could be designed to produce the noise cancelling signal y.

Assume that s, n0, n1 and y are statistically stationary and have zero means. Assume that s is uncorrelated with n0 and, n1 and suppose that n1 is correlated with n0. The output z is

$$z = s + n_0 - y \tag{5}$$

After Squaring, we obtain

$$z^{2} = s^{2} + (n_{0} - y)^{2} + 2s(n_{0} - y)$$
(6)

Taking expectations both side of the equation

$$E[z^{2}] = E[s^{2}] + E[(n_{0} - y)^{2}] + 2E[s(n_{0} - y)]$$
(7)

Realizing that s is uncorrelated with n_0

$$E[z^{2}] = E[s^{2}] + E[(n_{0} - y)^{2}]$$
(8)

The signal power will be unaffected as the filter is adjusted to minimize [3]. Accordingly, the minimum output power is

$$\min E[z^2] = E[s^2] + \min E[(n_0 - y)^2]$$
(9)

When the filter is adjusted for the $E[z^2]$ minimized, therefore $E[(n_0 - y)^2]$ is, also minimized. The filter output y is then a best least squares estimate of the primary noise n_0

Adapting the filter to minimize the total output power is thus causing the output z to be a best least squares estimate of the signal s.

The output z will contain the signal s plus noise, the output noise is given by $n_0 - y$.

Since minimizing $E[z^2]$ minimizes $E[(n_0 - y)^2]$ minimizing the total output power minimizes the output noise power. Since the signal in the output remains constant, minimizing the total output power maximizes the output signal to noise ratio.

The smallest possible output power is

$$E[z^2] = E[s^2] \tag{10}$$

When

$$E[(n_0 - y)^2] = 0 (11)$$

At $y = z_0$ and z = s.

Minimizing the output power causes the output signal to be perfectly noise free.

4 NORMALISED LMS (NLMS) ALGORITHM FOR ADAPTIVE FILTER

A general form of the adaptive filter is illustrated in Fig. 2. where d(n) is a desired response (or primary input signal), y(n) is the actual output of a programmable digital filter driven by a reference input signal x(n), and the error e(n) is the difference between d(n) and y(n). The function of the adaptive algorithm is to adjust the digital filter coefficients to minimize the mean-square value of e(n).

A technique to adjust the convergence speed is the Normalized LMS (NLMS) algorithm. The NLMS is shown as follows:

$$w(n+1) = w(n) + \mu(n)x(n)e(n)$$
(12)

 $\mu(n)$ is adaptive step size which is calculated from the power and the step size of the filter [7].

5 RESULTS

In this section we compare the performance of the LMS and NLMS algorithms as noise canceller. The algorithms are implemented according to the steps. Fig. 3 shows that, the input sinusoidal signal and noisy signal. Fig. 4 shows that, the noise present in the sinusoidal signal and is eliminated using LMS algorithm of order 3. Fig. 5 shows that, the noise present in the sinusoidal signal and is eliminated using NLMS algorithm of order 3.

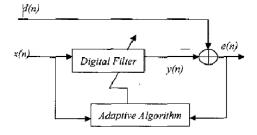


Fig. 2: Basic Adaptive filter [4]

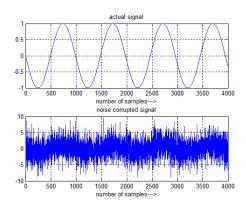


Fig. 3: Input Sinusoidal and noisy signal

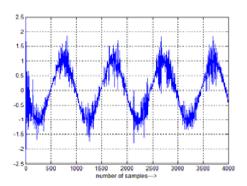


Fig. 4: LMS filter output

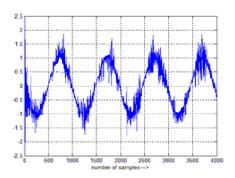


Fig. 5: NLMS filter output

6 CONCLUSION

This paper has described an application in which the use of an LMS and NLMS adaptive filter is particularly appropriate. The main work of this paper is to investigate the application of an algorithm based on adaptive filtering in noise cancellation problem. The LMS and NLMS algorithm has been shown to produce good results in a noise cancellation problem. If our input changes gradually the NLMS filter is working better than the LMS algorithm.

References

- Adaptive Filter Theory by Simen Haykin: 3rd edition, Pearson Education Asia, LPE.
- 2. Adaptive Signal Processing by John G Proakis, 3rd edition, Perntice Hall of India.
- 3. B. Widow, Adaptive noise canceling: principles and applications, Proceedings of the IEEE, vol. 63, pp. 1692-1716, 1975.
- Adaptive Signal Processing by Bernard Widrow and Samuel D. Stearns; Pearson Education Asia.
- Adaptive Filtering, Prediction and Control by G. Goodwin, K. Sin, Englewood Cliffs, Prentice- Hall, 1985.
- Soni Changlani & Dr. M. K. Gupta, The applications And Simulation of Adaptive Filter In Speech Enhancement, in International Journal of Computer Engineering And Architecture, Vol. 1, No. 1, pp. 95-101, June 2011.
- Ying He, Hong He, LiLi, YiWu and Hongyan Pan, The Applications and Simulation of Adaptive Filter in Noise Cancelling, in International conference on computer Science and Software Engineering, 2008.

About Authors

Nilay Desai has received B. E. degree in Electronics and Communication Engineering in 2011, M. E. degree in Electronics and Communication Engineering in 2013. He has 4 years of teaching experience at under graduate (UG) level and 2 years of teaching experience at post graduate (PG) level. Currently, Nilay Desai is a Assistant Professor with Electronics & Communication/Electrical

Engineering Department, Chhotubhai Gopalbhai Patel Institute of Technology, Bardoli, Surat, India. His areas of specialization are Digital Signal Processing, Digital Image Processing. His areas of interest are Digital Signal Processing, Biomedical Signal Processing, Microprocessor and Microcontroller, Digital Image Processing.

Prof. Chintan Desai has received B. E. degree in Electronics and Communication Engineering in 2008, M. Tech. degree in Digital Electronics and Advanced Communication in 2010. He has 7 years of teaching experience at under graduate (UG) and 3 years of teaching experience at post graduate (PG) level. Currently, Chintan Desai has received B. E. degree in Electronics and Communication in 2008, M. Tech. degree in Digital Electronics and Communication in 2010. He has 7 years of teaching experience at post graduate (PG) level. Currently, Chintan Desai has received B. E. degree in Electronics and Communication Engineering in 2008, M. Tech. degree in Digital Electronics and Communication Engineering in 2008, M. Tech. degree in Digital Electronics and Advanced Communication in 2010. He has 7 years of teaching experience at under graduate (UG) and 3 years of teaching experience at post graduate (PG) level. Currently, Chintan Electronics and Electronics an

tan Desai is Assistant Professor with Electronics & Communication / Electrical

Desai Nilay Pandya Utpal Desai Chintan $Active\ Noise\ Control\ Using\ LMS\ \ \&\ NLMS\ Algorithm$

Engineering Department, Chhotubhai Gopalbhai Patel Institute of Technology, Bardoli, Surat, India. His area of specialization are Digital Electronics, Information Theory and Coding, Error Control Coding. His areas of interest are Digital Electronics, Information Theory and Coding, Error Control Coding, Microprocessor and Interfacing, Optical Fiber Communication, Basics of Electrical and Electronics, Electronic Communication, Microcontroller and Applications.