
94

o, you’ve got your first Arduino, and
you’ve tried a few basic projects.
Maybe you’ve got an LED blinking and
now you’re struggling to find a project
that’s a little more creative. Look no
further, we’ve got you covered! You may

have achieved some basic bleeps and bloops with the
built in Tone() function, but we’ll be doing some much
more advanced digital synthesis.

Digital synthesizers are very different from
their analogue counterparts. Instead of a complex
collection of diodes, amplifiers, oscillators, and other
esoteric audio electronics, they mainly use processing

TUTORIAL

Getting started with the Mozzi library to get your Arduino wailing

Make your own 8-bit
synths with Arduino

S
power to generate waveforms and effects. Digital
synths have other benefits too, but their main
strength is that once set up, they’re extremely
reconfigurable; you don’t need to rebuild your synth
to change its sound, just reprogram it.

Throughout this tutorial we’ll be using the Mozzi
library to create a variety of sounds. The library is
capable of generating complex waveforms, audio
effects, and playing short samples, all from the
modest hardware in an Arduino. We’ll be using it to
create a basic FM (frequency modulation) synthesizer.

We’ll get started with the absolute bare minimum
for a Mozzi-based sketch. Make sure you’ve installed

YOU’LL NEED

An Arduino
(Preferably Uno,
although others
are possible)

Breadboard

470 Ω resistor

Tactile button

4 × 10 kΩ linear
potentiometers
(usually marked
B10K)

Right
Our final synth,
with the four
potentiometers we
need to play with to
create the sound of
the future

8-bit Synths With Arduino

Chris Ball

@ChrisBallMidi

Chris Ball is a
technologist working
in Manchester, UK.
He has worked on a
variety of interactive
art installations. You
can visit his site at
chrisballprojects.co.uk

http://chrisballprojects.co.uk

95

FORGE

the Mozzi library, then start your Arduino environment
and open the example under File > Examples > Mozzi
> Basics > Sinewave. This is a sine wave generator,
which is pretty much the digital audio equivalent of a
‘Hello, World!’ program.

Here you’ll see the basics of a Mozzi program,
and you might notice it has a slightly more complex
structure than your usual Arduino sketch. Let’s ignore
that for now, and get making some sound. Upload the
code to your Arduino. If all is well, a sine wave will be
generated on pin 9, and we just need to listen to it.

To connect the Arduino to our amplifier/earphones
we need to connect the following:

Arduino pin 9 470 Ω resistor Audio jack tip (the
resistor is to help protect pin 9)
Arduino GND Audio jack base

If all’s well, you should hear a sine wave at 440 Hz. If
you have no sound, check your volume, connections,
and that the sketch has uploaded successfully.

If you’ve had some success, we’d recommend at
this point that you take a look at some of the other
examples the Mozzi library has to offer. This will give
you an idea of what it’s capable of, but bear in mind
that some examples expect extra hardware.

Back to the sine wave generator: we’ll be breaking
down the elements of this sketch fairly thoroughly, as
knowing the basics of how Mozzi works will enable
you to make more exciting changes later.

First, we’ll take a look at the includes. This is where
we add in the required files from the Mozzi library,
and you should see three includes: ‘MozziGuts.h’,
‘Oscil.h’, and ‘tables/sin2048_int8.h’.

MozziGuts.h is the main library required for doing
anything with Mozzi. This file will adapt your Arduino
for use as a synth, by taking over some timers and
setting up some fast sampling methods.

Oscil.h is simply a template for an oscillator. Any
sound requires a repeated change in voltage, or air
pressure; an oscillation. This file tells Mozzi how to
create an oscillator from a lookup table.

tables/sin2048_int8.h is the lookup table we’ll be
using to make a sine wave. A lookup table is often
used where calculating the values of a function (in this
case, a sine wave) would take too long. We simply
pre-calculate all the values and store them in memory.

When we need them, we can simply ‘look them
up’, hence the name lookup table.

We then have a line:

Oscil <SIN2048_NUM_CELLS, AUDIO_RATE>
aSin(SIN2048_DATA);

This is a little like saying, “Create a sine wave
oscillator called aSin, using the table I mentioned
before.” We also have the line:

#define CONTROL_RATE 64

Which means we intend to update our controls (our
potentiometers and buttons) 64 times per second.
Mozzi asks for control rates to be powers of two (e.g.
2, 4, 8, 16, …)

To continue to our main functions: in setup() you’ll
see two commands. The first, startMozzi(CONTROL_
RATE), will start the Mozzi engine, and the second,
aSin.setFreq(440), will set the frequency (or pitch) of
our oscillator. 440 Hz is middle A (so if you only get
this far, at least you can get your band in tune).

Typically, when writing a Mozzi sketch, you’ll
avoid putting anything in loop(), except the function
audioHook(). This function will calculate samples (little
chunks of audio data) ready to be written to our output.
So where do we put our code? You’ll notice, apart from
the usual setup() and loop() functions that we have
two more: updateControl() and updateAudio().

updateControl() is where we put the changes
we want to happen at our control rate (64 times
per second). This will be things like reading our
potentiometer values, button states and other tasks
that don’t need to happen too often. In this sketch,
nothing like this is required, so the function is empty.

updateAudio() is the function that audioHook()
will run repeatedly – it calculates our audio samples
and stores them in a buffer to be sent to pin 9
later. You can see within this sketch the code:

To 470 Ω resistor
and Arduino pin 9 To Arduino GND

INSTALLING
THE MOZZI LIBRARY
From sensorium.github.io/Mozzi you can click on the download link. This will take you to
an optional donation page where you can help the author of the library out, if you choose.
You’ll then be taken to the GitHub project page for Mozzi. Click the ‘Source Code .zip’ link,
download the zip file, and extract the contents to your Arduino/libraries directory (this is
usually in your documents folder).

Your file structure should then look like this:
Documents/Arduino/Libraries/Mozzi-1.0.3 (although you may have a different version).

Above
How to connect
crocodile clips to
an audio jack

http://sensorium.github.io/Mozzi

TUTORIAL

96

return aSin.next(); which simply means to send the
next sample for this oscillator to the buffer.

Let’s make a couple of changes to the way this
works. We’ll add one pot (potentiometer) to control
frequency, and a second pot to control volume.

Connect two pots to your Arduino (Figure 1). Each
pot will have one side connected to 5V, the other
side connected to GND and the middle (wiper) to an
analogue input. We’ll use analogue inputs A0 and A1.

Add the following lines of code before void setup():

int pot0, pot1;
int volume,frequency;

These will be the variables where we’ll store the
pot values, and the frequency and volume values they
will control.

Add the following lines of code inside your
updateControl() function:

pot0 = mozziAnalogRead(A0);
pot1 = mozziAnalogRead(A1);
frequency = pot0 + 50;
volume = map(pot1, 0, 1023, 0, 255);
aSin.setFreq(frequency);

The first two lines will store our pot voltages as
variables, pot0 and pot1.

The third stores the value of pot0 + 50 to a variable
called frequency. We’ve added the +50 to prevent the
frequency becoming too low to hear.

The fourth line will store the value of pot1 to a
variable called volume, but will scale it in the process
to be between 0 and 255 (instead of 0 and 1023).

The last line will set the frequency of our oscillator
to the value in the frequency variable

This covers changing our frequency, but we need
to make one last change in updateAudio() for the
volume control to work.

Change the line:

return aSin.next();

to:

return (aSin.next()*volume)>>8;

This line may look confusing, but it’s very similar
to multiplying the output by a value between 0 and
1. It’s good to get used to calculating this way as it’s
significantly faster with integer values on an Arduino,
and we need speed to calculate all our sample values.

If you upload these changes, you now have a basic
synthesizer! You should be able control pitch with pot
0 and volume with pot 1.

So perhaps you’ve played that for a while and
become bored already. This was bound to happen –
it’s only a simple synthesizer. Let’s try adding another
sine wave oscillator, and another potentiometer to
control it. To add another potentiometer, you can
repeat the connection pattern as before, with our
middle wiper pin wired to A2 on the Arduino. We
already have the sine wave lookup table we need, so
we can do this simply by duplicating the line:

Oscil <SIN2048_NUM_CELLS, AUDIO_RATE>
aSin(SIN2048_DATA);

You’ll need to give our oscillators distinct names, so
we should change this to:

Oscil <SIN2048_NUM_CELLS, AUDIO_RATE>
aSin1(SIN2048_DATA);
Oscil <SIN2048_NUM_CELLS, AUDIO_RATE>
aSin2(SIN2048_DATA);

We’ll add and change some variables too:

int pot0,pot1,pot2;
int frequency1,frequency2,volume;

Our updateControl() function will become:

pot0=mozziAnalogRead(A0);
pot1=mozziAnalogRead(A1);

Figure 1
Connecting two pots
to your Arduino

DIGITAL TO ANALOGUE
WITH PWM
You might have realised that we are using pin 9, a digital pin, to do the job of an analogue
output – how does this work? We are using pulse-width modulation (PWM). Simply put, if
we want to approximate 2.5 V with a 5 V digital output, we switch the digital pin high for 50%
of the time. 1 V would be 20%, 2 V 40%, and so on.

PWM is most commonly used for making lights (particularly LEDs) appear at different
brightnesses or motors run at different speeds, all by switching a constant voltage on or off.

This approach does have significant downsides, though – mainly that it will introduce a
lot of noise at your modulation frequency. Not a problem for motors or LEDs, but your ears
will probably notice straight away.

Desired Output PWM Output

V
o

lt
ag

e

V
o

lt
ag

e

Time Time

The ‘>>’ and ‘<<’
symbols are called
bitshift operators,
and they are a very
fast way of dividing
or multiplying by 2.
The ‘>>8’ is a little like
saying “divide by 2, 8
times”. If our volume
value was 200, you
could think of this line
as Output × (200/256).

QUICK TIP

8-bit Synths With Arduino

97

FORGE

pot2=mozziAnalogRead(A2);
frequency1=pot0+50;
frequency2=pot1+50;
volume=map(pot2, 0, 1023, 0, 255);
aSin1.setFreq(frequency1);
aSin2.setFreq(frequency2);

And our updateAudio() code will be changed also:

return volume*((aSin1.next()+aSin2.next())>>1)>>8;

Our two sine waves, when added together, could
add up to a number higher than our PWM output can
reproduce. In audio circles this is called ‘clipping’ and
is generally avoided (unless you’re intentionally after
a distorted sound). We’ve prevented this here by
dividing the output by two.

The above changes should result in two controllable
sine waves on pots 0 and 1. You may even be able to
get some interesting ‘throbbing’ if you pitch the notes
close together – this is called ‘beating’ and is caused
by interference between the two frequencies.

To develop the synth further, we’ll introduce
frequency modulation (FM). This means we’ll use the
output of one sine wave to control the frequency of
another, resulting in varied timbres.

We’ll also be making some changes to our
hardware: adding another potentiometer; and
introducing a push button to trigger the audio.

If you make these changes to the circuit, and
upload the code from hsmag.cc/JPNNBP, you should
have yourself an FM synthesizer!

The magic happens in two lines. This one, in
updateControl():

aSin2.setFreq(frequency2);

And this line, in updateAudio():

aSin1.setFreq(frequency1+(amount*(aSin2.
next())>>8));

The first sets the frequency of our modulation, and
the second uses that to control the frequency of our
main waveform. There is also an amount control that
will multiply our modulation, with some interesting
effects. Remember, now you’ll need to push the
trigger button to hear sound! Try changing some of
the numbers in this code and see how they affect
the output.

So, you should have a basic 8-bit synthesizer,
but more importantly, an idea of how to use the
Mozzi library to develop it further. Mozzi has a huge
selection of basic waveforms, some audio effects,
and it’s extremely well documented, with great
examples. If you feel lost at any point, you can always
check on the website.

OTHER ARDUINO AUDIO PROJECTS
ElectroSmash PedalShield: This is a kit designed to sit on top of an Arduino Due and turn
it into a general-purpose guitar effects pedal. It has some basic examples available, and a
forum with many more. Electrosmash.com/pedalshield

Ardutouch: International hacker Mitch Altman has created an Arduino-based synth
project called Ardutouch, built on a fantastic library by himself and Bill Alessi. The library
by itself is great to mess around with, although it may require an experienced Arduino
user. cornfieldelectronics.com/cfe/projects.php

Teensy Audio Board: This hardware for the Teensy 3.1/3.2 and the accompanying audio
library get an honourable mention simply because it’s so fully featured. Not strictly
Arduino, but Arduino-like. pjrc.com/teensy/td_libs_Audio.html

There are many more useful libraries in the Arduino Library List (playground.arduino.cc/
Main/LibraryList) under the ‘audio’ section.

Left
The final circuit
diagram for
the breadboard

G
N

D
G

N
D

5V

D2

SW1

A0

A1

R1
POTENTIOMETER

R2
POTENTIOMETER

A2

R3
POTENTIOMETER

A3

R4
POTENTIOMETER

+

Having problems
getting the first
example working?
There’s a much
more thorough
walkthrough at
hsmag.cc/AwksSP

QUICK TIP

http://Electrosmash.com/pedalshield
http://cornfieldelectronics.com/cfe/projects.php
http://pjrc.com/teensy/td_libs_Audio.html
http://playground.arduino.cc/Main/LibraryList)
http://playground.arduino.cc/Main/LibraryList)
http://hsmag.cc/AwksSP

