
Programable calculator analyzes filter designs

by Tom Martin
Collins Radio, Dallas, Texas

An SR-56 calculator can provide a quick check on lowpass circuits laid out with the excellent filter-design programs in its applications library or on any other active or passive low-pass filter with up to four components. The calculator can be programed to analyze the performance of these filter circuits, giving the gain or

Circuits analyzed. The frequency responses of the active low-pass filter in a and the passive low-pass filter in b are quickly plotted by use of the programs given for the SR-56 calculator. The decibel value of A(f) is displayed at a chosen initial frequency f_1 and at successive incremented frequencies $(f_1 + \Delta f)$, $(f_1 + 2\Delta f)$... as the R/S key is pushed repeatedly.

attenuation at an incremental frequency each time the R/S key is pushed.

The theory of operation for the active-filter analysis is straightforward. It simply solves the gain-versus-frequency equations that are shown along with the circuit diagram in part a of the figure. The program (Table 1) includes provision for entering a starting frequency, f_1 , and a frequency step size, Δf . Then simply pressing R/S repeatedly produces the data for plotting a linear frequency-response graph.

The passive-filter analysis works by calculating, at each frequency, the complex impedance that is seen looking back into the filter network from the load, as illustrated in part b of the figure. This filter impedance and the load resistance are then used in the equation given below to calculate the attenuation through the circuit

The passive-filter program (Table 2) also provides for rapid plotting of frequency response curves, using f_1 and Δf . For filters with fewer than four reactive elements, zeroes should be inserted in place of the unused element values. The run time for this program is about 8 seconds for each frequency.

Engineer's notebook is a regular feature in *Electronics*. We invite readers to submit original design shortcuts, calculation aids, measurement and test techniques, and other ideas for saving engineering time or cost. We'll pay \$50 for each item published.

LOC KEY KEY LOC KEY LOC 00 STO 30 RCL 60 X 01 31 0 61 RCL RCL 1/x 6 02 32 62 2 + +/-03 33 63 X + 04 34 RCL 64 REGISTERS 1 RCL RCL 35 65 R, 0 0 06 3 36 1/x 66 R_2 1 X 07 37 67 + # 08 RCL RCL 68 2 R_3 38 |x|09 4 39 2 69 LOG 3 C, 10 40 1/x 70 X 4 C2 2 Δf 5 11 41 71 ÷ 0 12 STO 42 72 6 temporary RCL * 13 6 43 73 7 temporary 14 -44 3 74 STO 8 temporary 8 15 RCL 45 X 75 9 temporary 16 46 2 76 RCL 1 17 5 47 X 77 18 RCL 48 78 SUM X 7 19 7 49 79 x2 RCL 20 50 80 RCL 21 X 51 1 81 8 22 4 # R/S 52 x2 23 X 53 83 GTO 24 54 84 0 π + 25 x2 55 RCL 85 2 26 56 9 x2 27 57 = VX 28 STO 58 29 11/x 59 PROCEDURE STEP PRESS 1 enter program, initialize CLR CMS RST enter data STO 0 Aiz STO # Ra STO 2 STO 3 Cn STO Cz 4 STO 3 enter initial frequency RVS A (fin) 4 continue RIS A. (fin + Of) A. (ffn# 201) For single frequency analysis, enter the frequency and press RST, then R/S.

LOC	KEY	LOC	LOC KEY		/ Lo		C KEY		ЭС	KEY
00	X	30	1		60			9	0	PROD
01	π	31	5		61		LOG	9	1	9
02	X	32	SUB	R	62		X	9	2	RTN
03	2	33	8		63		1	9	3	1 _X 2
04	13(2)(5)	34	1		64		0	9	4	#
05	SUM	35	RC	4	65		5	9	5	RCL
06	0	36	6		66		R/S	9	6	9
07	RCL	37	INV	/	67	164	CLR		7	x2
80	1	38	SUI	vi I	68		STO		8	=
09	1/x	39	8		69		8		9	RTN
10	SUM	40	×		70		STO	15		
11	8	41	2	T	71		9	1		
12	RCL	42	4	9	72		RCL	1		
13	2	43	RC	L	73		7	1		
14	SUBR	44	8		74	10	RST		REGISTERS	
15	7	45	(FX.9		75		*	0		2 nf
16	5	46	SUB	R	76		RCL	1		R ₁
17	RCL	47	9		77		0	2		Ĉ2
18	3	48	3		78		5	3		La
19	SUBR	49	1/x	25	79	1 3	SUM	4		Ca
20	7	50	X		80	1	9	5		Ls
21	5	51	1		81		RCL	6		Re
22	RCL	52	RC	4	82		8	7		Δf
23	4	53	8		83	SUBR		8	te	emporary
24	SUBR	54	SUB	R	84	1	9	9	te	emporary
25	7	55	9	e	85		3			
26	5	56	3	3	86		1/x	1		
27	RCL	57	+/-		87	P	PROD			
28	5	58	+	33	88	8		1		
29	SUBR	59	1		89		+/-]		
STEP	PRO	ENTE	ĒR		PRESS			DISPLAY		
1	enter program, initialize					CLR CMS		RST	57	dia Chi
2	enter data			R ₁	_	STO	1	. 1		
				C2		370	2			للالية
10 m	Colle	MATTER PORTER		L3		370	3	1.0	115	AS
	64599	tos o	C ₄		STO	4		-	0.00	
	125 259	URAUS .	large.	Ls		STO	5		25	200
aare	10 785 , 10102708			R ₆		STO	6	400	138	SESSOR
38	garran in in	enter initial frequency/			f_1		/		1	(f ₁)
4	continue			e '1		R/S R/S	-	137	-	$(f_1 + \Delta f)$
e-ti				6		R/S				$(f_1 + 2\Delta)$
	2 2 4 7 2 2 2 2 2					1110			۲	1