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Fig. 1. Response curves of the three filters described in text.
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The newer filters, such as Butterworth, Chebyshev. and
elliptic types, are more accurate and easier to design.

ITH the many advances being made today in the

field of semiconductors, it is almost impossible to

keep abreast of developments. Therefore, it is not
strange to find that familiar old passive circuits have ad-
vanced too. One particular area, filters, has changed radi-
cally from what many remember from technical school and
college days. The old filters, such as constant-K and M-
derived types, have been replaced by the Butterworth,
Chebyshev, and elliptic tvpes. These newer designs have
much to recommend them. Their responses are more accu-
rate over a wide range and are easier to design. (Fig. 1)

The constant-K and M-derived types were traditionally
designed section by section. This method was involved since
each section had to be matched while trving to optimize
the response. The results of such designs were approximate
to say the least. Today the filter is designed as a whole,
which simplifies the matching and allows us to optimize
the response. Both problems actually reduce to almost
“cookbook” simplicity in most cases. The third problem in
filters, realization, now becomes the main problem.

The actual mathematics involved in a filter design today
is very abstract and is usually best left to the mathema-
ticians. The filter’s properties are expressed by a transfer
equation that is a function of frequencv. The shape of the
response is then set, but actually that is all that is perma-
nent. The frequency and impedance information contained
in such a transfer equation mayv be extracted. The remain-
ing information is said to be “normalized”. A normalized
number or quantity may then be used under a large num-
ber of circumstances as opposed to the unique value or
quantity simply by supplving the missing information to
de-normalize the quantity. This mathematical trick allows
us to catalogue the elements of a specific filter tvpe and to
design from them a filter of any particular bandwidth or
impedance value that we require.

Originally, the term “realization” meant the mathematical
realization process. This requires at least a mathematician
and at most a digital computer. The term now means the
physical as well as mathematical processes of determining
the actual L and C component values to be used. 1 prefer
the terms “de-normalization” and “realization” to distin-
guish the two.

Transformers are sometimes added to the filter for imped-
ance matching or for balance-to-unbalance conversion.

The various filter circuits can be made in two general
forms. These ave the ladder network and the lattice or
bridge networks, Fig. 2. The ladder network is an unbal-
anced network, that is, it is a three-terminal network. This
type of network is used where the input is single-ended
such as for unbalanced antenna lines or single-ended 1.f.
or a.f. amplifiers.
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‘The three basic filter circuits may all be built as a ladder,
in fact, this is the most common configuration.

The lattice or bridge type is a balanced or four-terminal
network. This makes the circuit useful only when the source
is balanced with respect to ground such as in 300-ohm
balanced lines or anv other area where the source and load
are balanced. This circuit is sometimes used with crystals
to form a crystal-lattice network.

Physical capacitors and inductors are not perfect, i.c.,
the best capacitors have some leakage and the best coils
have some resistance. How, then, may a filter be made
which was designed assuming ideal elements? As a rule of
thumb, it has been found that the more the filter require-
ments tighten, the less dissipation is allowable, and the
closer the elements must be to the ideal. This is related
to the elements by a term called the minimum “Q7.

The ratio of reactance to resistance of a coil is called
“Q7". When this ratio is small, the coil acts as an RL circuit
and not like an inductor. This will put a large insertion loss
in the filter passband and distort the passband shape, usually
at the edges first. Because of this problem we must have a
certain (Continued on page 82)
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Fig. 2. (A) Unbalanced and (B) balanced arrangements.
Table 1. Unloaded minimum "’Q’s’’ for two filter types.
NUMBER OF POLES

2 3 4 5 6 7
Butterworth 1.4 2 261 325 3.9 4.6

TYPE OF FILTER

Chebyshev (0.1 dB ripple) | 1.65 | 2.8 45| 6.8 95 | 13.0
Chebyshev (0.3 dB ripple) | 1.8 34 541 7.1 | 12.1 | 163
Chebyshev (1 dB ripple) 2.3 45 75 1118 | 168 | 21.9
Chebyshev (2 dB ripple) 315 | 66 | 118 {183 | 26.2 | 36.4
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New Filter Designs
(Continued from page 31)

type of filter and a certain number of
poles. Since the bandwidth may be
vastly different for different designs, we
normalize this information and allow it
to be added later.

Table 1 is a list of the normalized
unloaded “Q” required as a function of
the number of poles and type of filter.
If the design is a low-pass type, these
“Q’s” are the minimum required for
each element of the filter. If a band-
pass design is used, the normalized “Q”
must be multiplied by the total filter
“Q”. This, then, is the minimum “Q”
required.

To illustrate how all of these aspects
dovetail, let us design a filter for the
band from 2 to 30 MHz with a v.s.w.r.
of no greater than 1.5:1, an attenua-
tion at least 35 dB at twice the —3 dB
bandwidth at 50 ohms impedance. A
v.s.w.r. of 1.5 represents a ripple of
0.177 dB (see Fig. 3) so a ripple of
0.1 dB is acceptable. The shape factor
will be the limiting factor for the mini-
mum number of elements we may use.
A good choice is a 5-element Cheby-
shev, 0.1 dB ripple filter. See Fig. 4 be-
low.

The normalized elements are found
to be: L1=1.15 H, C2=1.39 uF, L3=
1.97 uH, C4=1.39 «F, and L5=1.15 xH.

De-normalizing by the following for-

mulas gives us values for L’ and C’;

e RL _ 50L
27(—3dB B.W.) = 6.28 X 28
C'= ¢

R X 2= (—3 dB B.W.)

. C
T 50 X 6.28 X 28

We get L/=0.327 yH, C2'=156 pF,
L3’=0.560 sH, C4’=156 pF, and L5'=
0.327 «H.

This gives us the low-pass prototype
filter from which we can get the final
bandpass design. This is achieved by
resonating the low-pass elements at the
geometrical mean frequency of the
band we wish to filter, or

fo = VIT X f2 = V2 X 30 MHz

= 7.74 MHz

The additional elements required are
thus found to be: C1’=1400 pF, L2'=
2.7 ¢H, C3'=725 pF, L4’=2.7 ¢H, and
C5'=1400 pF.

The filter is of the ladder type and is
shown along with its response in Fig. 4.

In practice, this filter would have to
be built and aligned. To do this, cer-
tain changes are made. One is in the
capacitors, two capacitors would be
used, one fixed and the other a variable
unit which could trim the fixed unit to
the precise value required. The induc-
tors would either be variable units or
precision toroids: both could be pre-
adjusted on a “Q”-meter to the exact
value and then installed. A
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Fig. 3. The amount
of loss due to ripple
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Fig. 4. The filter em-
ployed along with its
frequency response.
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