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RaneNote 119 LINKWITZ-RILEY ACTIVE
CROSSOVERS UP TO 8TH-
ORDER: AN OVERVIEW

INTRODUCTION
In 1976, Siegfried Linkwitz published his famous

paper [1] on active crossovers for non-coincident drivers.
In it, he credited Russ Riley (a co-worker and friend) with
contributing the idea that cascaded Butterworth filters
met all Linkwitz’s crossover requirements. Their efforts
became known as the Linkwitz-Riley crossover align-
ment. In 1983, the first commercially available Linkwitz-
Riley active crossovers appeared from Sundholm and
Rane [2].

Today, the de facto standard for professional audio
active crossovers is the 4th-order Linkwitz-Riley (LR-4)
design. Offering in-phase outputs and steep 24 dB/octave
slopes, the LR-4 alignment gave users the tool necessary
to scale the next step toward the elusive goal of perfect
sound.

Now a new tool is available: the 8th-order Linkwitz-
Riley (LR-8) active crossover [3]. With incredibly steep
slopes of 48 dB/octave, the LR-8 stands at the door
waiting for its turn at further sound improvements. Using
a LR-8 cuts the already narrow LR-4 crossover region in
half. Just one octave away from the crossover frequency
the response is down 48 dB. The LR-8 represents a major
step closer to the proverbial brick wall, with its straight
line crossover region.

Before exploring the advantages of LR-8 designs, it is
instructional to review just what Linkwitz-Riley align-
ments are, and how they differ from traditional
Butterworth designs of old.



1st-Order Amplitude Response
Using 1kHz as an example and plotting the amplitude

versus frequency response (Figure 2) reveals the expected
low-pass and high-pass shapes. Figure 2 shows that the 1st-
order circuit exhibits 6 dB/octave slopes. Also, that 6 dB/
octave equals 20 dB/decade. Both ways of expressing
steepness are useful and should be memorized. The rule is:
each order, or degree, of a filter increases the slopes by 6
dB/octave or 20 dB/decade. So, for example, a 4th-order (or
4th-degree—interchangeable terms) circuit has 24 dB/octave
(4x6 dB/octave) or 80 dB/decade (4x20 dB/decade) slopes.

Using equal valued resistors and capacitors in each of the
circuits causes the amplitude responses to ‘cross over’ at one
particular frequency where their respective -3 dB points
intersect. This point represents the attenuation effect resulting
when the impedance of the capacitor equals the resistance of
the resistor.

The equivalent multiplying factor for -3 dB is .707, i.e., a
signal attenuated by 3 dB will be .707 times the original in
level. Ohms law tells us that if the voltage is multiplied by
.707, then the current will also be multiplied by .707. Power is
calculated by multiplying voltage times current. Therefore, a
voltage multiplied by .707, and a current multiplied by .707,
equals 0.5 power. So the -3 dB points represent the one-half
power point—a useful reference.

Lastly, Figure 2 shows the flat amplitude response
resulting from summing the LF and HF outputs together. This
is called constant voltage, since the result of adding the two
output voltages together equals a constant. The 1st-order case
is ideal in that constant power also results. Constant-power
refers to the summed power response for each loudspeaker
driver operating at the crossover frequency. This, too, results
in a constant. Since each driver operates at ½ power at the
crossover frequency, their sum equals one—or unity, a
constant.

1st-Order Phase Response
Much is learned by examining the phase shift behavior

(Figure 3) of the 1st-order circuit. The upper curve is the HF
output and the lower curve is the LF output. The HF curve
starts at +90o phase shift at DC, reduces to +45o at the cross-
over frequency and then levels out at 0o for high frequencies.

Figure 1. 1st order crossover network

1st-Order Network
It begins with a resistor and a capacitor. It never gets more

complicated than that—just resistors and capacitors: lots and
lots of resistors and capacitors. Resistors are the great emanci-
pators of electronics; they are free of frequency dependence.
They dissipate energy without frequency prejudice. All
frequencies treated equally. Capacitors, on the other hand,
selectively absorb energy; they store it, to be released at a
later time. While resistors react instantly to any voltage
changes within a circuit, capacitors take time to charge and
discharge.

Capacitors are so frequency dependent, they only pass
signals with frequency associated with them. Direct-current
(what we call zero frequency) will not pass at all; while, at the
other end of the spectrum, very high frequencies will not
absorb. Capacitors act like a piece of wire to high frequencies;
hardly there at all.

We use these facts to create a crossover network. Figure 1
shows such a circuit. By interchanging the positions of the
resistor and capacitor, low-pass (low frequencies = LF) and
high-pass (high frequencies = HF) filters result. For the low-
pass case (LF), the capacitor ignores low frequencies and
shunts all high frequencies to ground. For the high-pass case
(HF), the opposite occurs. All low frequencies are blocked and
only high frequencies are passed.

Figure 2. 1st-order amplitude response Figure 3. 1st-order response



The LF curve starts with 0o phase shift at DC, has -45o at the
crossover frequency and levels out at -90o for high frequen-
cies.

Because of its reactive (energy storing) nature each
capacitor in a circuit contributes 90o of phase shift, either
positive or negative depending upon its application. Since
the HF section places the capacitor directly in the signal path,
this circuit starts out with +90o phase shift. This is called
phase lead. The LF section, which starts out with 0o and
eventually becomes -90o is called phase lag.

Examination of Figure 3 allows us to formulate a new rule:
each order, or degree, of a crossover network contributes
±45o of phase shift at the crossover frequency (positive for
the HF output and negative for the LF output).

Once again, Figure 3 shows the idealized nature of the 1st-
order case. Here the result of summing the outputs together
produces 0o phase shift. Which is to say that the summed
amplitude and phase shift of a 1st-order crossover equals that
of a piece of wire.

1st-Order Group Delay Response
We shall return to our rules shortly, but first the concept of

group delay needs to be introduced. Group delay is the term
given to the ratio of an incremental change in phase shift
divided by the associated incremental change in frequency
(from calculus, this is the first-derivative). The units for group
delay are seconds. If the phase shift is linear, i.e., a constant
rate of change per frequency step, then the incremental ratio
(first-derivative) will be constant. We therefore refer to a
circuit with linear phase shift as having constant group
delay.

Group delay is a useful figure of merit for identifying
linear phase circuits. Figure 4 shows the group delay response
for the Figure 1 1st-order crossover circuit. Constant group
delay extends out to the crossover region where it gradually
rolls off (both outputs are identical). The summed response is,
again, that of a piece of wire.

The importance of constant group delay is its ability to
predict the behavior of the LF output step response. A circuit
with constant group delay (linear phase shift) shows no
overshoot or associated damping time to a sudden change
(step) in input level (Figure 5). The circuit reacts smoothly to

the sudden change by rising steadily to meet the new level. It
does not go beyond the new level and require time to settle
back. We also refer to the step response as the transient
response of the circuit. The transient response of the summed
outputs is perfect since their sum is perfectly equal to one.

For clarity purposes normally only the step response of the
LF network is shown. Nothing is learned by examining the
step response of the HF network. A step response represents a
transition from one DC level to another DC level, in this case,
from -1 volt to +1 volt. A HF network, by definition, does not
pass DC (neither does a loudspeaker), so nothing particularly
relevant is learned by examining its step response. To
illustrate this, Figure 5 shows the HF step response. It begins
and ends with zero output since it cannot pass DC. The sharp
edge of the input step, however, contains much high fre-
quency material, which the HF network passes. So, it begins at
zero, passes the high frequencies as a pulse, and returns to
zero.

The HF and LF outputs are the exact complement of each
other. Their sum equals the input step exactly as seen in
Figure 5. Still, we learn everything we need to know by
examining only the LF step response; looking for overshoot
and ringing. From now on, just the LF output will be shown.

Vector Diagrams
A vector is a graphical thing (now we’re getting technical)

with magnitude and direction. We can use vectors to produce
diagrams representing the instantaneous phase shift and
amplitude behavior of electrical circuits. In essence, we freeze
the circuit for a moment of time to examine complex relation-
ships.

We shall now apply our two rules to produce a vector
diagram showing the relative phase shift and amplitude
performance for the 1st-order crossover network at the single
crossover frequency (Figure 6a). By convention, 0o points
right, +90o points up, <R>-90o points down, and ±180o points
left. From Figures 2 & 3 we know the HF output amplitude is
<R>-3 dB with +45o of phase shift at 1 kHz, and the LF output
is -3 dB with -45o phase shift. Figure 6a represents the vectors
as being .707 long (relative to a normalized unity vector) and
rotated up and down 45o. This shows us the relative phase
difference between the two outputs equals 90o.

Figure 4. 1st-order group delay response Figure 5. 1st-order transient response



Figure 6. 1st through 4th-order butterworth vector diagrams

Next we do vector addition to show the summed results.
Vector addition involves nothing more complex than men-
tally moving one of the vectors to the end of the other and
connecting the center to this new end point (it is like con-
structing a parallelogram). Doing this, results in a new vector
with a length equal to 1 and an angle of 0o. This tells us the
recombined outputs of the HF and LF networks produce
constant voltage (i.e., a vector equal to 1), and is in phase
with the original input of the circuit (i.e., a vector with 0o

phase rotation).
The 1st-order case is ideal when summed. It yields a piece

of wire. Since the responses are the exact mirror images of
each other, they cancel when summed, thus behaving as if
neither was there in the first place. Unfortunately, all opti-
mized higher order versions yield flat voltage/power re-
sponse, group delay or phase shift, but not all at once. Hence,
the existence of different alignments and resultant compro-
mises.

2nd, 3rd & 4th-Order Butterworth Filters
There are many types of filters (most named after math-

ematicians). Each displays a unique amplitude characteristic
throughout the passband. Of these, only Butterworth filters
have an absolutely flat amplitude response. For this reason,
Butterworth filters are the most popular for crossover use.
Butterworth filters obey our two rules, so we can diagram
them for the 2nd, 3rd and 4th-order cases (Figures 6b-6d). The
2nd-order case has ±90o phase shift as shown. This results in
the outputs being 180o out of phase. Vector addition for this
case produces a zero length vector, or complete cancellation.
The popular way around this is to reverse the wiring on one of
the drivers (or, if available, electronically inverting the phase
at the crossover). This produces a resultant vector 90o out of
phase with the input and 3 dB (1.414 equals +3 dB) longer.
This means there will be a 3 dB amplitude bump at the
crossover region for the combined signals.

The 3rd-order Butterworth case (Figure 6c) mimics the 1st-
order case at the crossover frequency, except rotated 180o.
Hence, we see the HF vector rotated up 135o (3x45o) and the
LF vector rotated down the same amount. The phase shift
between outputs is still 90o. The resultant is constant voltage
(unity) but 180o out-of-phase with the input.

The 4th-order Butterworth diagram (Figure 6d) shows the
HF vector rotated up 180o and the LF vector rotated down the
same amount. The phase difference between outputs is now
zero, but the resultant is +3 dB and 180o out-of-phase with the
input. So, the 4th-order and the inverted phase 2nd-order
produce 3 dB bumps at the crossover frequency.

Linkwitz-Riley Alignment
Two things characterize a Linkwitz-Riley alignment: 1)

In-phase outputs (0o between outputs) at all frequencies (not
just at the crossover frequency as popularly believed by
some) and 2) Constant voltage (the outputs sum to unity at all
frequencies).

Linkwitz-Riley in-phase outputs solve one troublesome
aspect of crossover design. The acoustic lobe resulting from
both loudspeakers reproducing the same frequency (the
crossover frequency) is always on-axis (not tilted up or down)
and has no peaking. This is called zero lobing error. In order
for this to be true, however, both drivers must be in correct
time alignment, i.e., their acoustic centers must lie in the same
plane (or electrically put into equivalent alignment by adding
time delay to one loudspeaker). Failure to time align the
loudspeakers defeats this zero lobing error aspect. (The lobe
tilts toward the lagging loudspeaker.)

Examination of Figure 6 shows that the 2nd-order (in-
verted) and 4th-order Butterworth examples satisfy condition
1), but fail condition 2) since they exhibit a 3 dB peak. So, if
a way can be found to make the amplitudes at the crossover
point -6 dB instead of -3 dB, then the vector lengths would
equal 0.5 (-6 dB) instead of .707 (-3 dB) and sum to unity—
and we would have a Linkwitz-Riley crossover.

Russ Riley suggested cascading (putting in series) two
Butterworth filters to create the desired -6 dB crossover points
(since each contributes -3 dB). Voila!  Linkwitz-Riley
alignments were born.

Taken to its most general extremes, cascading any order
Butterworth filter produces 2x that order Linkwitz-Riley.
Hence, cascading (2) 1st-order circuits produces a 2nd-order
Linkwitz-Riley (LR-2); cascading (2) 2nd-order Butterworth
filters creates a LR-4 design; cascading (2) 3rd-order
Butterworth filters gives a LR-6, and so on. (Starting with LR-
2, every other solution requires inverting one output. That is,
LR-2 and LR-6 need inverting, while LR-4 and LR-8 do not.)



Figure 7. Linkwitz-Riley vector diagrams for 2nd to 8th-order cases.

LR-2, A Transient Perfect 2nd-Order Crossover
As an example of this process, let’s examine a LR-2

design. Referring to Figure 1, all that is required is to add a
buffer amplifier (to avoid interaction between cascaded filter
components) to each of these two outputs and then add
another resistor/capacitor network identical to the first. We
now have a 2nd-order Linkwitz-Riley crossover.

The new vector diagram looks like Figure 7a. Each vector
is .5 long (from the fact that each 1st-order reduces by 0.707,
and .707 x .707 = .5) with phase angles of +90o. Since the
phase difference equals 180o, we invert one before adding and
wind up with a unity vector 90o out of phase with the original.

Figure 8 shows the amplitude response. The crossover
point is located at -6 dB and the slopes are 12 dB/octave (40
dB/decade). The summed response is perfectly flat. Figure 9
shows the phase response. At the crossover frequency we see
the HF output (upper trace) has +90o phase shift, while the LF
output (lower trace) has -90o phase shift, for a total phase
difference of 180o. So, we invert one before summing and the
result is identical to the LF output.

These results differ from the 1st-order case in that the
summed results do not yield unity (a piece of wire), but
instead create an all-pass network. (An all-pass network is
characterized by having a flat amplitude response combined
with a smoothly changing phase response.) This illustrates
Garde’s [4] famous work.

Cascading two linear phase circuits results in linear phase,
as shown by the constant group delay plots (all three identi-
cal) of Figure 10. And constant group delay gives the tran-
sient perfect LF step response shown in Figure 11.

LR-4 and LR-8 Alignments
Looking back to Figure 7b., we see the vector diagrams for

4th and 8th-order Linkwitz-Riley designs. The LR-4 design
shows the resultant vector is unity but 180o out of phase with
the input at the crossover frequency.

Cascading (2) 4th-order Butterworth filters results in an
8th-order Linkwitz-Riley design. Figure 7c. shows the vector
diagram for the LR-8 case. Here, we see the phase shift for
each output undergoes 360o rotation returning to where it
began. The resultant vector is back in phase with the original
input signal. So, not only, are the outputs in phase with each
other (for all frequencies), they are also in phase with the
input (at the crossover frequency).

8th-Order Comparison
A LR-8 design exhibits slopes of 48 dB/octave, or 160

dB/decade. Figure 12 shows this performance characteristic
compared with the LR-4, 4th-order case for reference. As
expected, the LR-4 is 80 dB down one decade away from the
corner frequency, while the LR-8 is twice that, or 160 dB

Figure 8. LR-2 amplitude response Figure 9. LR-2 phase response



Figure 10. LR-2 group delay Figure 12. LR-4 and LR-8 slopes

Figure 13. Figure 12 mangnifiedFigure 11. LR-2 transient response

down. Of interest here, are the potential benefits of narrowing
the crossover region by using a LR-8 alignment.

Figure 13 magnifies the responses shown in Figure 12 to
reveal a clearer picture of the narrower crossover region, as
well as showing the flat summed responses. (The slight
difference in summed amplitudes at the crossover frequency is
due to a slight gain difference between the two circuits.)  The
critical crossover region for the LR-8 case is one-half of what
it is for the LR-4 case. The exact definition of where the
crossover region begins and ends is ambiguous, but, by
whatever definition, the region has been halved.

As an example of this, a very conservative definition
might be where the responses are 1 dB down from their
respective passbands. We would then refer to the crossover
region as extending from the -1 dB point on the low-pass
response to the -1 dB point on the high-pass response. For
LR-8, these points are 769 Hz and 1301 Hz respectively,
yielding a crossover region only ¾-octave wide. As a com-
parative reference, the LR-4 case yields -1 dB points at 591
Hz and 1691 Hz, for a 1.5-octave wide region.

For the LR-8 case, it is interesting to note that the -1d B
point on the low-pass curve corresponds almost exactly to the
-20 dB point on the high-pass curve (the exact points occur at

760 Hz and 1316 Hz). So if you want to define the region as
where the response is down 20 dB, you get the same answer.
The entire region for the LR-8 case is ¾-octave wide, or it is
one-half this number for each driver. That is, the loudspeaker
driver (referred to as ‘driver’ from now on) has to be well
behaved for only about 0.4 octave beyond the crossover
point. This compares with the 4th-order case where the same
driver must behave for 0.8 octave.

The above is quite conservative. If other reference points
are used, say, the -3 dB points (895 Hz & 1117 Hz), then the
LR-8 crossover region is just 1/3-octave wide, and drivers
only have to stay linear for 1/6-octave. (1/6-octave away from
the crossover frequency the drive signal is attenuated by 12
dB, so the output driver is operating at about 1/16 power.)

The extremely steep slopes offer greater driver protection
and linear operation. Beyond the driver’s linear limits all
frequencies attenuate so quickly that most nonlinearities and
interaction ceases being significant. Because of this, the
driver need not be as well behaved outside the crossover
frequency. It is not required to reproduce frequencies it was
not designed for. For similar reasons, power handling capabil-
ity can be improved for HF drivers as well. And this narrower
crossover region lessens the need for precise driver time



alignment since the affected spectrum is so small.
The caveat, though, is an increased difficulty in designing

good systems with sharp slopes. The loudspeakers involved
have differing transient responses, polar patterns and power
responses. This means the system designer must know the
driver characteristics thoroughly. Ironically, sometimes
loudspeaker overlap helps the system blend better even when
on-axis amplitude response is flat.

LR-8 Phase Response
Figure 14 shows the respective phase response for LR-4

(upper trace) and LR-8 (lower trace) designs. As predicted by
the vector diagram in Figure 7b, the LR-4 case has 180o

(4x45o) of phase shift at the crossover frequency. Thus, the
output signal is out-of-phase with the input signal at the
crossover frequency for the LR-4 case. Both outputs are in-
phase with each other, but out-of-phase with the input.

The LR-8 design eliminates this out-of-phase condition
by bringing the outputs back in sync with the input signal at
the crossover frequency. The lower trace shows the 360o phase
shift for the LR-8 alignment.

LR-8 Transient Response
Butterworth functions do not have linear phase shift and

consequently do not exhibit constant group delay. (First-
order networks are not classified as Butterworth.)  Since
Linkwitz-Riley designs (higher than LR-2) are cascaded
Butterworth, they also do not have constant group delay.

Group delay is just a measure of the non-linearity of phase
shift. A direct function of non-linear phase behavior is
overshoot and damping time for a step response. The transient
behavior of all Linkwitz-Riley designs (greater than 2nd-
order) is classic Butterworth in nature. That is, the filters
exhibit slight overshoot when responding to a step response,
and take time to damp down.

Figure 15 compares LR-8 and LR-4 designs and shows the
greater overshoot and damping time for the 8th-order case.
The overshoot is 15% for the LR-4 case and twice that, or
about 30%, for the LR-8 case. As expected, the LR-8 design
takes about twice as long to damp down. The initial rise-time
differences are due to the group delay value differences.

Is It Audible?
The conservative answer says it is not audible to the

overwhelming majority of audio professionals. Under labora-
tory conditions, some people hear a difference on non-
musical tones (clicks and square waves).

The practical answer says it is not audible to anyone for
real sound systems reproducing real audio signals.

Linkwitz-Riley Power Response
Linkwitz-Riley alignments produce constant voltage

response (voltage vectors sum to unity) at the crossover
frequency, but they do not produce constant power. At the
crossover frequency, each voltage output is ½ of normal. This
produces ½ the normal current into the loudspeakers. Since
power is the product of voltage times current, the power is ¼
of normal. Considering a simple two-way system, the com-
bined total power at the crossover frequency will be ½ of
normal (¼ from each driver), producing a dip of 3 dB at the
crossover frequency in the overall power response.

For LR-2 designs, this may be a practical problem, but for
all higher ordered Linkwitz-Riley designs, it is not. The
reason is due to the steep slopes for LR-4 (and higher)
designs. The steep slopes reduce the crossover region to such
a small spectral area that this power dip is rarely a real
problem.

Future of LR-8 Designs
The ultimate success of the LR-8 design is yet to be

determined. It is up to the system designers and end-users to
evaluate the design and decide whether the positives out-
weigh the negatives, and the performance factors offset the
additional cost.

Meanwhile, you’ve got a new hammer to swing.

Figure 14. LR-4 and LR-8 phase response Figure 15. LR-4 and LR-8 transient response
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