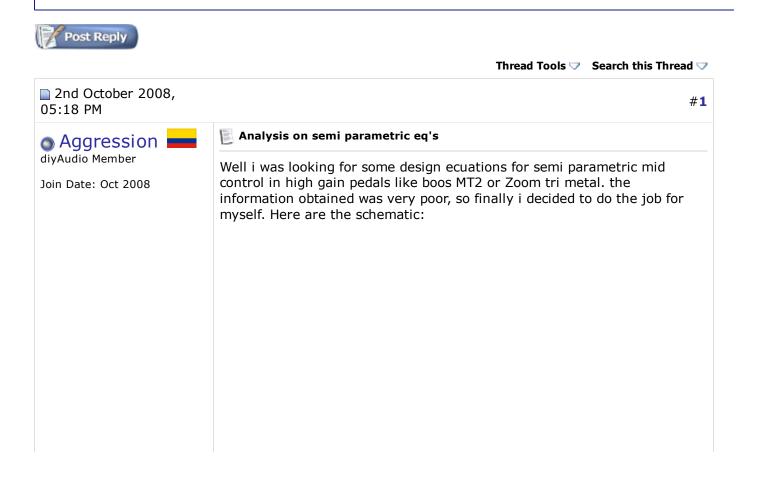
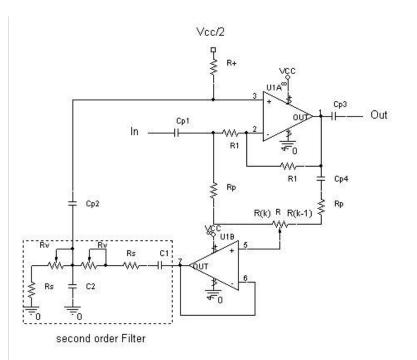
Home > Forums > Live Sound > Instruments and Amps									User Name User Name 🔽 Stay logged in				
🛶 🖓 Analysis on semi parametric eq's							Password			Log	in		
Home	Forums	Rules	Articles	Store	Gallery	Wiki 🛡	Blogs 🛡	Register	Donations	FAQ	Calendar	Community	7 5
													-

Instruments and Amps Everything that makes music, Especially including instrument amps.


HIDE


Printed Circuit Boards Flex Circuit / Rigid-Flex Boards Manufacturing PCB Services www.cirexx.com

Electronic Circuit Board Design Specializing in Circuit Design. Contact Us Today For A Free Quote! HughesCircuits.com/Circuit_[

Audio Amplifier Schematic Search Thousands of Catalogs for Audio Amplifier Schematic www.globalspec.com

AdChoices 🕞

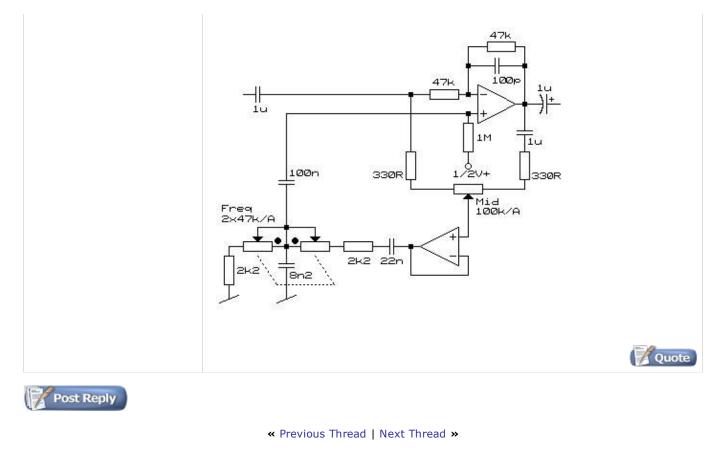
And here are the design ecuations:

Second Order Filter

$$f_0 = \frac{1}{2\pi R_T \sqrt{C_1 C_2}} \text{ where } R_T = R_V + R_S$$

$$\mathcal{Q}_0 = \frac{\sqrt{C_1C_2}}{2C_1+C_2}$$

Gain at fo


$$G(f_0) = \frac{C_1}{2C_1 + C_2}$$

Max center frequency attenuation/Amplification

$$\begin{split} MaxAtt &= 20 \log \Biggl(\frac{2R_{P} + R - 2(R + R_{P})G(f_{0})}{2R_{P} + R - 2R_{P}G(f_{0})} \Biggr) \\ MaxAmp &= 20 \log \Biggl(\frac{2R_{P} + R - 2R_{P}G(f_{0})}{2R_{P} + R - 2(R + R_{P})G(f_{0})} \Biggr) \end{split}$$

All de Cp1 and Cp3 in the circuit must be in the order of uF, and Cp2 hundreds of nF, to guarantee the bass passing.

I've simulated the semi parametric mids control for the boss MT2, and the results confirm the data obtained with the ecuations. The frequency range is 240.84Hz to 5.38kHz, The Q is 0.257, and the attenuation/amplification is about 36.61dB.

Currently Active Users Viewing This Thread: 1 (0 members and 1 guests)

Posting Rules 🔞				
You may not post new threads You may not post replies You may not post attachments You may not edit your posts				
BB code is On Smilies are On [IMG] code is On HTML code is Off Trackbacks are Off Pingbacks are Off Refbacks are Off				
Forum Rules				
Similar Threads				
Thread	Thread Starter	Forum	Replies	Last Post
DIY Digital Parametric EQ	macboy	Digital Source	57	7th March 20 09:26

Similar Threads				8
Parametric Schematic	punchpeanut	Parts	11	7th March 2011 12:04 AM
semi parametric eq	reap461	Parts	5	4th December 2008 08:56 PM
Parametric Q Calculationhelp, please	tocs100	Multi-Way	3	2nd January 2006 12:21 PM
Parametric EQ as mox sidekick	JensRasmussen	Solid State	16	13th September 2004 09:58 PM

New To Site?

Need Help?

- Register to Participate
- Search
- Privacy Statement
- Contact Us

- Frequently Asked Questions
- Did you forget your password?
- Mark Forums Read

All times are GMT. The time now is 05:22 PM.

Page generated in 0.06616 seconds (69.33% PHP - 30.67% MySQL) with 10 queries

Home - Contact Us - Advertise - Suggestions & Requests - Rules - Store - Sponsors - Archive - Privacy Statement - Terms of Service - Top

Copyright ©1999-2011 diyAudio