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With few exceptions, electronic measure-
ment and control system designs incorpo-
rate varying degrees of three distinct 
functions: measurement of the environment,
processing of data, and output back into the
environment. This process can be anything
from the measurement of thermistor resist-
ance and display of temperature on an LCD
to digital filtering of an analog signal. The
common thread among many processes is
that they often perform some level of digital conversion of
an analog signal, computation and decision-making in the
digital world, and conversion back into the analog domain.
Figure 1 illustrates these elements that make up the analog
signal chain.

Over the past decade, advancements in semiconductor
integration have facilitated more robust combinations of
digital processing and analog peripherals. While such
devices are nothing new to today’s standards, there are a
number of trade-offs that must be evaluated to choose the
level of integration most suitable for a given application.
Key issues include system performance, size, and cost. As
system complexity increases, increased integration can
provide a smaller and lower-cost design capable of perform-
ance equal to or even better than that of the discrete
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alternative. Take, for instance, a typical discrete analog
signal chain solution as compared to an integrated signal
chain solution, both designed to solve the same monitor
and control system function. An example for each system
is shown in Figure 2.

In both systems, a variable resistance generates a voltage
level that is sampled by the ADC. The conversion result is
processed and used to determine the update rate of the
DAC and, consequently, the analog output signal frequency.
The output signal itself is a 12-bit sine wave and is made
up of 16 steps or data points. While the analysis and results
are based on the specific software implemented for each
case, the same approach presented here can be used to
determine CPU performance across any application.

Streamlining the mixed-signal path with 
the signal-chain-on-chip MSP430F169
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Figure 1. Typical measurement and control system
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Figure 2. Discrete system (top) vs. the
integrated MSP430F169
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Case 1: Discrete peripheral system
The discrete signal chain solution is envisioned with the
MSP430F149, an external ADC, an external DAC, and a
serial interface to connect the system. The ADC measures
and converts the variable voltage, and the result is used to
process and determine the output frequency of a sine
wave generated by the DAC. This discrete solution is
detailed in Figure 3.

As shown, the external ADC and DAC are controlled via
separate SPI interfaces of the microcontroller. Clocking of
the MCU is performed at a maximum clock speed of 8 MHz
and is input at the XT2 terminals. The external resonator

clock source drives two 16-bit timers that provide individ-
ually controllable interrupt durations that initiate commu-
nication with each of the external peripherals. Sampling of
the ADC occurs at a rate of 8 kSPS as set by Timer_B, and
data is transferred from the ADC at a 1-MHz serial clock
frequency via the hardware USART. Data loading of the
external DAC occurs at a variable frequency as determined
by Timer_A. The frequency at which Timer_A updates the
DAC is determined by an 8-sample average of the ADC
conversion result. Using a 16-point sine data table, this
configuration provides an adjustable DAC-generated sine
wave. Figure 4 shows the software flow for the discrete
component system and represents common operation of an
MCU using interrupt processing with multiple peripherals.

To characterize the performance of the system, a loading
analysis of the CPU is performed. Time spent by the CPU
servicing the ADC during execution of the Timer_B inter-
rupt service routine (ISR) requires a minimum of 60 CPU
clock cycles (60 MCLKs). This includes toggling of the ADC
/CS, receiving 16 bits of data, and averaging 8 conversion
samples. The serial data transfer from ADC to MCU takes
additional time during which the CPU must wait for the
completion of each data byte transfer. The number of bits
to be transferred and the ADC serial clock rate used
determine this additional time.

The ISR executes in 60 MCLKs and requires an addi-
tional handling time of 11 MCLKs (the number of cycles
needed to enter and exit each ISR). Every 8th ADC sample,
the average result is calculated; and Timer_B CCR0 is
updated, triggering the DAC ISR. The average and update
operation adds 29 MCLKs to the ADC ISR every 8th time
through the routine.

Maximum Timer_B ISR execution time (every 8th sample):
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Figure 3. Discrete analog system
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Average Timer_B ISR execution time (average time
required to receive one conversion from the ADC):

CPU loading required to complete the total ISR execu-
tion time can be estimated in terms of the average MCLK
cycles required to service the ADC.

Timer_B ISR average MCLK cycles required:

Given the 8-kSPS ADC sample rate, the CPU must enter
the Timer_B ISR 8000 times per second, for a total of
1,619,200 MCLKs each second—a CPU loading of 
~1.62 MIPS required to communicate with the ADC and
handle data. This represents approximately 20% of the
CPU’s total available instruction execution time (8 MIPS
maximum), leaving 6,380,800 CPU cycles to perform other
MCU functions such as data transfer to the external DAC.

As mentioned earlier, the DAC is updated at a variable
rate depending on the time between interrupts as deter-
mined by Timer_A. The DAC update interrupt interval is
proportional to the value in Timer_A CCR0. The ISR
requires a minimum of 51 MCLKs to complete, including
toggling /FS, transferring 16 bits to the DAC, and servicing
the sine table pointer.

Since the DAC cannot be updated faster than the
Timer_A ISR can be executed, the maximum update rate,
and consequently the maximum DAC output frequency
achievable, is calculated based on the ISR time required to
update the DAC.

In contrast to the time spent executing the ISR servicing
the ADC, the CPU does not have to wait for all 16 data
bits to be transferred to the DAC before exiting the ISR.
After writing the least significant byte to the SPI transmit
buffer, the hardware USART module handles transmission
of the data to the DAC, allowing the CPU to continue
instruction execution. The actual time spent updating the
DAC is a combination of the time spent executing the ISR

25.3 s 8 MHz 202.4 MCLKsµ × =

( ) . % ( ) . %60 11 87 5 60 29 11 12 5 16+ × + + + ×
+ =

8 MHz 1 MHz
25.3 sµ

and the time required to complete data transmission to
the external DAC. A complete DAC update cycle is shown
in Figure 5.

To avoid any possible transmit data overrun, the SPI
transmit buffer is tested after the DAC ISR is entered. If
data is still being transmitted when the ISR is entered, the
CPU will wait until the transfer is complete before sending
the next sync pulse to the external DAC.

In addition to the 51 MCLKs to execute the ISR, an
additional 4 clocks are required every 16th loop through
the routine, which resets the sine table pointer to the first
value in the array. This causes every 16th DAC update (or
6.25% of the DAC updates) to require a small additional
execution time, which is taken into account when actual
CPU loading is calculated. Also included are the 11 cycles
required to enter and exit the ISR.

Average Timer_A ISR execution time:

Timer_A ISR CPU loading for a given fOUT:

The maximum DAC frequency based on the measured
time to transmit each 16-bit data word is given by:

The maximum frequency represents a 100% loading of
the CPU. In reality this is not feasible, as CPU time must
also be spent servicing the ADC. The maximum frequency
achievable by the DAC is more correctly established when
the required ISR execution time needed to sample the
external ADC is taken into account. This is a critical
requirement if distortion cannot be tolerated in the given
application. Figure 6 shows the effect on the DAC output
as the update frequency increases beyond the speed of
the Timer_B ISR sampling the ADC.
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The desired DAC update frequency, or DAC ISR entry
frequency, is established by the value in Timer_A CCR0,
which for this example is 0x004C = 76 counts. The actual
time between DAC ISR entries is 77 counts and includes
one additional timer count occurring when the timer rolls
from 76 to 0. For the example Timer_A CCR0 value with
an 8-MHz Timer_A clock, the expected time delay between
DAC updates is 9.625 µs as shown in Figure 6. However,
when the ADC is sampled, a much longer delay is incurred;
and the shape of the desired sine wave is affected. This
effect can be eliminated by establishing a maximum update
rate of the DAC and can be estimated by the total time
required to execute each ISR. Keep in mind that this is
the maximum time, not the average. The total ADC and
DAC transfer time is 36.75 µs, providing a maximum DAC
output frequency of ~1.7 kHz. The degree to which distor-
tion can be allowed in the DAC output and the methods
used to reduce it are application-specific and will deter-
mine the maximum acceptable output frequency.

Each complete sine output cycle at this frequency
requires 1700 SPS × 16 data points to be transferred to
the external DAC each second. With 62.2 MCLKs required
to complete each DAC update, the CPU loading due to the
DAC ISR at the maximum fOUT is given by:

This represents a maximum loading of approximately
21% of the total available instruction throughput of the
CPU. As the DAC update frequency is reduced, the CPU
loading percentage will decrease accordingly. However,
when CPU bandwidth is determined for any application,
the maximum potential loading must be taken into account
to ensure desired system performance over the entire
operational range of the system.

Total CPU loading to service both the external ADC and
DAC comes to slightly over 3.32 MIPS, leaving 58% of the
CPU’s available time to perform additional tasks. With the
exception of calculating the ADC average and servicing
the sine table pointer, the CPU spends this time doing
nothing more than transferring data between the external
components of the system. To eliminate the impact of data
handling on the CPU, the communication between each
element of the system must be streamlined. Integration of
the analog functions in the system with the MCU is the
step required to achieve this efficiency.

Case 2: Integrated peripheral system
By utilizing the highly integrated analog and digital func-
tionality of the MSP430F169, the system described in the
previous section is realized completely with a single-chip
silicon solution. Figure 7 shows the integrated MCU system.

Integration of the ADC and DAC functions on-chip with
the MCU greatly simplifies the system design in comparison
to the discrete case. The serial communication protocols
to the ADC and DAC have been removed from the CPU
and off-loaded to the ADC and DAC internal modules. The
ADC conversion averaging function is still performed by

1.7 kHz 16 points 62.2 MCLKs 1.7 MIPS× × ≅

the CPU; but, in the case of the DAC, data transfer and
pointer handling are entirely performed by the on-chip
DMA module. DAC output frequency adjustment is made
by interrupting the DMA instead of the CPU, freeing up
resources for other tasks. The software flow for the inte-
grated approach is shown in Figure 8.

The integrated solution uses Timer_B to establish the on-
chip ADC12 sample/convert trigger for an ADC sample rate
of 8 kSPS. This is given by Timer_B CCR0, which is set to
0x03E7 or 999. Timer_B is clocked with SMCLK = 8 MHz
as in the external peripheral case. The ADC12 module is
configured to perform a repeat conversion on a single
channel: A0. Every 1000 Timer_B counts, or 0.125 ms, the
ADC12 is triggered and performs a sample/convert of A0,
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stores the conversion result in the ADC12MEM0 register,
and generates an interrupt.

The ADC12 ISR requires a maximum of 50 MCLKs to
complete. This is for every 8th interrupt, which includes
the averaging of the conversion result. (ISR execution
durations for samples 1 through 7 require only 21 MCLKs.)
The averaged result is then moved to Timer_A CCR0, which
defines the timer count between triggers to the DMA load-
ing data to channel 0 of the DAC12 module. The total
MIPS required to perform the ADC conversion handling
and averaging is given in the following equation.

On-chip ADC ISR MCLKs per second:

Total CPU loading for the ADC12 ISR is 3.6% of the total
available CPU—a reduction of greater than five times the
CPU loading as compared to the external ADC scenario.
While this reduction is impressive, more compelling is the
increased performance achieved by bringing the DAC on-
chip. Along with the DMA available on the MSP430F169,
DAC updating can be performed completely transparent
to the CPU.

( ) ( )

, ,

21 11 7000 50 11 1000

1 000 000

+ × + + ×
≈ 0.29 MIPS

trigger. The source address for the DMA is the first location
of the sine table data and is auto-incremented each time a
value is moved to DAC12_0. Once all 16 data points are
sent to the DAC, the DMA source address resets to the
first value of the sine table and repeats. The number of
data values transferred by the DMA before address reset 
is defined in DMA0SZ and is equal to the length of the
sine data table.

Triggering of the DMA and the transfer of sine data to
the DAC12 module is performed entirely transparent to
the CPU. Although the CPU executes no instructions, each
DMA transfer does require 2 MCLKs to complete. One
MCLK cycle is required to retrieve the source data, and
the second moves the data to the destination location.
During this time, the CPU is halted for 2 cycles and the
DMA transfers the required data. Effective CPU loading
can be determined based on the required 2 MCLKs per
DMA transfer.

For the same 1.7-kHz maximum DAC fOUT in the external
ADC/DAC example, a total of 54,400 MCLKs are required
to perform an update cycle through the complete sine
table via the DMA.

This is 0.68% of the total available CPU throughput.
Totaled with the time spent calculating the ADC12 conver-
sion result average, the required total CPU loading for the
system operating with a DAC output frequency of 1.7 kHz
is 0.35 MIPS. This represents a factor of almost 10 times
fewer instructions per second than that for the exact same
system using external peripherals.

In addition to an increase in available CPU performance,
the distortion effects of the sine wave output as shown for
the external peripheral case are eliminated. Because the
DMA handles 100% of the DAC12 updating duties, the
CPU instruction execution time is not dependent on the
DAC12_0 output frequency. The timing requirements for
the external peripheral case relating to the DAC as a
result of external ADC ISR handling are no longer valid
and do not apply when determining the maximum DAC12
output frequency. If the update frequency of the DAC12
causes the CPU loading to exceed the remaining 7.65 MIPS
available, only the ADC ISR handling will be affected, not
the frequency of the DAC output.

As an example, channel 0 of the DAC12 module could
theoretically be updated every 2 MCLKs. The maximum
theoretical DAC output frequency for a 16-point sine wave is:

However, triggering the DMA in single-word mode
requires a minimum of 4 clock cycles to complete. To
transfer the DAC data, 2 clocks are needed; and 2 clocks
are required to synchronize the DMA transfer to the timing
of the bus. The method of using Timer_A and the DMA to
update the DAC12 yields a maximum DAC output frequency

2 MCLKs 16 points

8 MHz
4 s or 250 kHz

×
= µ

1.7 kHz
0.055 MIPS

× ×
=

2 16

1 000 000, ,

Counts

T
im

e
r

V
a

lu
e

CCR0 = 0x046

CCR0 = 0x0F4

CCR2 =
0x05

DMA Trigger

Timer_A Rollover

0xFFFF

Figure 9. Timer_A operation

The DAC12 module is configured in 12-bit, unsigned
binary mode. As defined earlier, Timer_A is clocked by
SMCLK and is set to count up to CCR0 as determined by
the ADC12 conversion result average. The DMA trigger
moving data from the sine table to the DAC is issued 
when the value in Timer_A CCR2 is reached by Timer_A.
Timer_A CCR2 need not be changed and can range in
value from 0 to Timer_A CCR0. When Timer_A crosses the
value in Timer_A CCR2, a trigger is sent to DMA channel
0. Since Timer_A CCR0 will be continuously modified to
change the DAC update rate, Timer_A CCR2 should be
assigned a value less than the smallest value to be written
to Timer_A CCR0. The concept of updating the DAC via
the DMA is shown in Figure 9.

Channel 0 of the DMA is configured to transfer data
from RAM to DAC12_0 upon reception of a Timer_A CCR2
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of 125 kHz. CPU loading is effectively 100%, since this
leaves no MCLKs for the CPU to execute instructions and,
as a result, ADC12 ISR servicing cannot be executed by
the CPU. A summary of CPU loading versus DAC frequency
for the discrete and integrated system scenarios is shown
in Figure 10.

The two different approaches discussed here are not
intended to show an ideal implementation for a given 
system but rather to compare and contrast the effects of
chip-level integration in the mixed-signal world. For any
number of reasons, some real-world systems may not be
able to take full advantage of such features; but, in general,
efficient utilization of MCU on-chip peripherals greatly
reduces CPU loading and can also allow for more flexible
control of the mixed-signal chain. As has been shown,
using an external ADC and DAC can require a significant
amount of dedicated CPU cycles simply to move data to
and from the data ports of each device. Integration of the
analog blocks of a system has a solid impact on driving the
total application to a higher level of performance.

Not only do on-chip peripherals facilitate a less complex
system, but often a smaller and lower-cost solution can be
realized through system integration. In this example, removal
of the serial communication links between the ADC and
DAC also increases total achievable system performance;
and CPU resources that were required for data I/O can
now be used for other system control and processing tasks.

The use of integrated analog peripherals is not always
feasible in a given application and is ultimately at the 
discretion of the engineer leading the design. In cases
where an MCU such as the MSP430F169 can be used, the
benefits of integrated analog become a powerful tool in
enabling complex signal-chain applications.
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