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application links to during compilation. 
As that library supports our processor, 
and the example application does not 
connect to an external signal source, we 
should be good.

The second point is reasonably well 
covered because we are sticking with 
a processor in the same family, with a 
large amount of code and data space, so 
we don’t expect any (nasty) surprises.

The third point is hard to judge, so 
we proceed by checking the porting 
guidelines and dive right in. The 
Readme file for the example application 
hints that the process will be simple:

Change device selection within MPLAB 
IDE to other device of your choice by 
using the following menu option:

MPLAB X >> Configuration drop-down 
option >> <Listed Device Configuration>

And that’s it. Great – this is going to 
be simple!

Uh oh, not so fast – a look at the 
options provided in the drop down 
allows for only three processor options, 
and they do not include our processor 
(see Fig.1). What do we do now? A 
quick look at the files included in the 
project shows that there are several files 
specific to each processor offered in the 
drop-down list. As should be expected, 
each processor has a different amount 
of memory and different configuration 
bit settings that need to be accounted 
for when building any application. 
So, there are different files for each 
one. Fortunately, one of the processors 
listed – the dsPIC33EP256GP506 – is 
very similar to ours. It just has more 
pins and less memory.

We now have two options: ‘hack’ the 
settings for the dsPIC33EP256GP506 
configuration files to match ours, or 
create a new configuration specifically 
for ours and do this properly. After 

much soul searching we chose the 
latter, as this way we are extending 
the Microchip example rather 
than creating a hard-to-maintain 
modification.

The porting process starts by 
duplicating the configuration settings, 
an option provided within the IDE. 
We rename the configuration to 
dsPIC33EP512GP502, change the 
debugger to PICKIT3, and select 
the correct processor type. Next, we 
copied the source code directory 
from src\system_config\exp16\
dspic33ep256gp506 to a directory 
called src\system_config\epe\
dspic33ep512gp502.

Finally, we added the newly copied-
over source file to the list of source files 
within the project itself. Performing a 
build of the project resulted in success, 
so that’s the porting over. It took just 
three hours of puzzling, which is 
quick, even for a simple project such 
as this.

The next step is to fully examine the 
source code of the Microchip example 
before we build our own, to understand 
the context of how to call the DSP 
library functions. If you would like 
to follow these articles along fully, go 
ahead and download the complete set 
of project files, which can be found on 
the current issue’s monthly web page 
at www.epemag.com. (In case you are 
wondering, the original license from 
Microchip permits modification and 
redistribution.) We will be expanding 
on these files over the coming months, 
so make sure you check out each 
month’s downloadable files from the 
website.

Inside the example application
Let’s go up a level and review where 
we are. The point of the exercise this 
month is to obtain a configuration 
of the DSP library that will run with 
our processor, and to understand 
the context of how the DSP library 
functions should be called. The 

help documentation within the IDE 
explains what the functions do, but 
not how to string them together. 
With luck, the example application 
supplied by Microchip should do this, 
so let’s look.

The bulk of the code is held in the 
file main_fft_example.c, located in 
the directory src\system_config\epe\
dspic33ep512gp502. Open the file in a 
text editor if you would like to follow 
along.

As a side note, IDEs such as 
MPLAB-X are not the best text editors 
when all you want to do is quickly 
view the contents of a text file. 
Notepad, supplied with Microsoft 
Windows, is acceptable, but very basic. 
Our recommended text file editor is 
Notepad++, a free and fully functional 
text editor. It opens quickly and does 
not fill the screen with clutter. You can 
download it from the creator’s website 
here: notepad-plus-plus.org

The first section inside main_fft_
example.c is the list of configuration bits 
settings. These are important because 
they define, among other things, the 
settings your microcontroller uses 
for the main system clock – and 
since this a different processor, it is 
almost certainly wrong. Correcting 
this will just require comparing the 
configuration settings section of both 
datasheets. We will come back to this 
section later.

Next, in the file, some variables 
are declared. Thankfully, just six 
variables, which will help simplify 
our understanding. Let’s look at the 
four important ones.

fractcomplex sigCmpx[]
This is an array that will hold the 
input data to the FFT function 
call. Note the unusual data type, 
fractcomplex. This is a special data 
type created by Microchip for use 
with their DSP library. A variable of 
type fractcomplex consists of two 
parts, the real part and the imaginary 
part. These are ‘complex numbers’, 
not simple integer or floating-point 
values.

Complex numbers are used in the 
FFT calculation because the signal 
is composed of many different 
frequencies varying in both amplitude 
and phase – complex numbers enable 
us to represent both quantities. 
A fuller explanation of complex 
number theory is beyond the scope of 
this article series, but it’s fine for us to 
simply ignore this fact, and just take 
care to follow the data types being 
used, and how they are translated 
back to useful and meaningful values.

When the FFT function is called, the 
resulting frequency data is returned in 
sigCmpx, so a second output array is 
not required.
fractcomplex twiddleFactors[]
This unusually named variable is 
actually a now-standard term used 
within DSP algorithms. This is an 
array of constants that are used within Fig.1. Changing configuration in the IDE
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the FFT function itself. The values 
change for FFT algorithms of different 
input sizes, but for a fixed input data 
size, the constants are the same – so 
it is convenient to pre-compute these 
before use. The Microchip example 
uses an FFT size of 512 samples, and 
we will stick with this, to save having 
to understand how to calculate new 
twiddle factors. We will talk about 
the implication of using a 512-sample 
buffer later, as the length of the buffer 
used impacts how long it takes to 
perform the FFT calculation, and the 
resolution of the frequencies obtained.

fractional input[]
This is an array in which the pre-
computed example input signal 
is stored. In our example code the 
contents, held in the file inputsignal_
square1khz.c, define a 1kHz square 
wave signal. Notice that again, this 
datatype is a Microchip defined one. 
It is used to represent a special form 
of non-integer values that are encoded 
into a 16-bit integer variable. In next 
months article we replace the contents 
of this array with samples taken 
from the ADC peripheral. The use of 
a fractional datatype is very helpful 
because the ADC peripheral supports 
outputting data in a fractional format 
– so once the ADC is correctly 
configured, we will not need to modify 
the data coming from the ADC before 
placing in this buffer. That will save 
lots of processing time.

fractional output[]
This array is used to store the 
output of the conversion from 
the FFT function’s complex data 
output and a squared magnitude 
representation, performed by the 
function SquareMagnitudeCplx(). 
The output buffer holds the data 
that we will use in our subsequent 
calculations. We make use of the square 
of the magnitude rather than calculate 
the magnitude itself, as the square-root 
function required to do this is very time 

consuming. For our applications, 
where we are only interested in 
finding the peak frequencies, 
it’s not necessary to perform the 
square root computation. We used 
exactly the same technique in our 
speed camera detector project back 
in January 2005 to provide a fast 
display update.

That short list of variables is 
followed by a simple main() 
function, which performs all the 
function calls. It’s actually quite 
straightforward, and the list of 
functions called is very short:

•  Copy the input data to the 
sigCmpx

• Call the FFT
• Compute square magnitude
• Find the peak frequency

 
A point of interest is how the 
fractional input array is copied to 
the fractcomplex sigCmpx array. 
Two steps are involved; the imaginary 
component in sigCmpx is set to 
zero, and the real component is set 
to half of the input data value. This 
is a requirement of Microchip’s FFT 
function and is mentioned in the DSP 
library help file. Although a fractional 
variable can store values between –1.0 
and +1.0, the FFT function requires 
that data be scaled down to between 
–0.5 and +0.5. A simple shift-right 
operation performs this.

Running the sample application
Returning to the configuration bits, 
we selected the internal RC oscillator 
as the source, and enabled the PLL 
(phase-locked loop) to multiply the RC 
oscillator’s output to 140MHz, giving 
us the highest processing speed of 70 

million instructions per second. We 
also added code within the main() 
function to toggle our LEDs, enabling 
the use of an oscilloscope to measure the 
execution time of the FFT conversion. 
The breadboard setup, now connected 
to the IDE and ready to go, is shown in 
Fig.2, and the schematic in Fig.3. Note 
that we do not have an external power 
supply – the PICkit 3 can provide the 
power itself.

We were delighted to find that the 
full process of copying data, FFT, 
square magnitude and peak detection 
took just under one millisecond. This 
is fantastic, because even when we 
add the time required to perform 512 
ADC samples, we will be running fast 
enough to be able to update a display 
several times a second. So, our tiny 
microcontroller is quite a powerful 
beast!

Final thoughts on FFT
Although we have discussed the 
magic of the FFT (Fast Fourier 
Transform), we’ve not yet spoken 
about the relationship between signal 
sample rate and FFT block size, and 
how these two relate to the values 
that are output by the FFT. Hopefully, 
with the aid of Fig.4 we can explain 
that.

At the top of Fig.4 we have our input 
signal – in this case, a nice simple 
sinewave. This is being sampled at a 
periodic interval. Eight samples are 
presented to the FFT algorithm, so the 
block length in this example is eight. 
(In our code we are using 512 samples, 
but this example shows just eight 
for clarity.) With eight samples, our 
sampling window (Tw) is eight times 
the ADC sample rate.

The FFT provides eight outputs – the 
same number as the number of inputs. 
Each output is a complex number, 

Fig.2. Completed breadboard
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Fig.5. DSPic OP-AMP peripheral
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to find an old discarded microphone 
with unpredictable performance. We 
are not looking for high audio quality 
here, so the cheapest option will be 
perfectly acceptable.

The other circuit change we will 
have to add next month will be 
correctly scaling the input signal from 
the microphone to match the input 
range of the microcontroller’s ADC. 
If the output from the microphone 
is a few hundred millivolts, then we 
will need to amplify it by a factor of 
10 or more. To achieve this, we plan 
to make use of a novel peripheral 
integrated into the microcontroller 
– an op amp, shown in Fig.5. It 
would seem that Microchip have 
included this for exactly the purpose 
we are intending, to reduce the 
circuit component count by two 
components, a dedicated op amp IC 
plus resistor. Once again, we would 
not be using this if we were looking 
for a high quality op amp, but given 
our project needs, it should be spot 
on. This is the first time we have 

denoting a specific frequency, and 
its magnitude. Each of these outputs 
is called a ‘bin’, as it contains the 
magnitude of a range of frequencies, 
the range being the resolution of 
that bin. Each bin spans a frequency 
defined by 1/Tw.

What about trying a real-world 
example? Well, next month we will be 
listening to the sound of guitar strings. 
Let’s make a rough assumption that the 
maximum frequency we are interested 
in resolving is 1kHz. If that is the 
maximum, then Nyquist’s theory says 
we need to sample at twice that rate, so 
our sample rate will be 2kHz. We have 
an FFT block size of 512, so our window size is 256ms. 
Given that the bandwidth of each bin is defined as 1/Tw, 
each bin spans a frequency range of 3.9Hz. Probably good 
enough for tuning a guitar – but we are not experts, so do 
feel free to comment!

If better resolution is required, then clearly that means 
spending more time taking samples, and having a bigger 
FFT, which will take longer to compute. So, there is a 
delicate balance between accuracy and response time.

Next month
In next month’s article we expand the circuit to include 
audio input from an electret microphone, so we can collect 
data from the real world, and attempt to create a guitar tuner. 
The choice of Electret microphone is largely uncritical; we 
are using the cheapest one available from Farnell – part 
number 2066501. Costing less than a pound and with free 
next day delivery, it is simply not worth rummaging around 
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used an op amp integrated into a microcontroller, so next 
month is going to be exciting!

If you are wondering how you will follow this article 
series along if you do not own a guitar – which most of 
us do not – fear not. We will be using a freely available 
audio signal generator program for the PC to create the 
guitar string sounds, available from here: www.ringbell.
co.uk/software/audio.htm. And there are many different 
audio generators available, even for smart phones. So 
testing the circuit will not be difficult. We have several 
guitars available, so this project will be getting a genuine 
real-world test next month.
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