

Everyday Practical Electronics, May 2018 49

application links to during compilation.
As that library supports our processor,
and the example application does not
connect to an external signal source, we
should be good.

The second point is reasonably well
covered because we are sticking with
a processor in the same family, with a
large amount of code and data space, so
we don’t expect any (nasty) surprises.

The third point is hard to judge, so
we proceed by checking the porting
guidelines and dive right in. The
Readme file for the example application
hints that the process will be simple:

Change device selection within MPLAB
IDE to other device of your choice by
using the following menu option:

MPLAB X >> Configuration drop-down
option >> <Listed Device Configuration>

And that’s it. Great – this is going to
be simple!

Uh oh, not so fast – a look at the
options provided in the drop down
allows for only three processor options,
and they do not include our processor
(see Fig.1). What do we do now? A
quick look at the files included in the
project shows that there are several files
specific to each processor offered in the
drop-down list. As should be expected,
each processor has a different amount
of memory and different configuration
bit settings that need to be accounted
for when building any application.
So, there are different files for each
one. Fortunately, one of the processors
listed – the dsPIC33EP256GP506 – is
very similar to ours. It just has more
pins and less memory.

We now have two options: ‘hack’ the
settings for the dsPIC33EP256GP506
configuration files to match ours, or
create a new configuration specifically
for ours and do this properly. After

much soul searching we chose the
latter, as this way we are extending
the Microchip example rather
than creating a hard-to-maintain
modification.

The porting process starts by
duplicating the configuration settings,
an option provided within the IDE.
We rename the configuration to
dsPIC33EP512GP502, change the
debugger to PICKIT3, and select
the correct processor type. Next, we
copied the source code directory
from src\system_config\exp16\
dspic33ep256gp506 to a directory
called src\system_config\epe\
dspic33ep512gp502.

Finally, we added the newly copied-
over source file to the list of source files
within the project itself. Performing a
build of the project resulted in success,
so that’s the porting over. It took just
three hours of puzzling, which is
quick, even for a simple project such
as this.

The next step is to fully examine the
source code of the Microchip example
before we build our own, to understand
the context of how to call the DSP
library functions. If you would like
to follow these articles along fully, go
ahead and download the complete set
of project files, which can be found on
the current issue’s monthly web page
at www.epemag.com. (In case you are
wondering, the original license from
Microchip permits modification and
redistribution.) We will be expanding
on these files over the coming months,
so make sure you check out each
month’s downloadable files from the
website.

Inside the example application
Let’s go up a level and review where
we are. The point of the exercise this
month is to obtain a configuration
of the DSP library that will run with
our processor, and to understand
the context of how the DSP library
functions should be called. The

help documentation within the IDE
explains what the functions do, but
not how to string them together.
With luck, the example application
supplied by Microchip should do this,
so let’s look.

The bulk of the code is held in the
file main_fft_example.c, located in
the directory src\system_config\epe\
dspic33ep512gp502. Open the file in a
text editor if you would like to follow
along.

As a side note, IDEs such as
MPLAB-X are not the best text editors
when all you want to do is quickly
view the contents of a text file.
Notepad, supplied with Microsoft
Windows, is acceptable, but very basic.
Our recommended text file editor is
Notepad++, a free and fully functional
text editor. It opens quickly and does
not fill the screen with clutter. You can
download it from the creator’s website
here: notepad-plus-plus.org

The first section inside main_fft_
example.c is the list of configuration bits
settings. These are important because
they define, among other things, the
settings your microcontroller uses
for the main system clock – and
since this a different processor, it is
almost certainly wrong. Correcting
this will just require comparing the
configuration settings section of both
datasheets. We will come back to this
section later.

Next, in the file, some variables
are declared. Thankfully, just six
variables, which will help simplify
our understanding. Let’s look at the
four important ones.

fractcomplex sigCmpx[]
This is an array that will hold the
input data to the FFT function
call. Note the unusual data type,
fractcomplex. This is a special data
type created by Microchip for use
with their DSP library. A variable of
type fractcomplex consists of two
parts, the real part and the imaginary
part. These are ‘complex numbers’,
not simple integer or floating-point
values.

Complex numbers are used in the
FFT calculation because the signal
is composed of many different
frequencies varying in both amplitude
and phase – complex numbers enable
us to represent both quantities.
A fuller explanation of complex
number theory is beyond the scope of
this article series, but it’s fine for us to
simply ignore this fact, and just take
care to follow the data types being
used, and how they are translated
back to useful and meaningful values.

When the FFT function is called, the
resulting frequency data is returned in
sigCmpx, so a second output array is
not required.
fractcomplex twiddleFactors[]
This unusually named variable is
actually a now-standard term used
within DSP algorithms. This is an
array of constants that are used within Fig.1. Changing configuration in the IDE

Pic n Mix (MP 1st & MH) – MAY 2018.indd 49 22/03/2018 21:31

50 Everyday Practical Electronics, May 2018

the FFT function itself. The values
change for FFT algorithms of different
input sizes, but for a fixed input data
size, the constants are the same – so
it is convenient to pre-compute these
before use. The Microchip example
uses an FFT size of 512 samples, and
we will stick with this, to save having
to understand how to calculate new
twiddle factors. We will talk about
the implication of using a 512-sample
buffer later, as the length of the buffer
used impacts how long it takes to
perform the FFT calculation, and the
resolution of the frequencies obtained.

fractional input[]
This is an array in which the pre-
computed example input signal
is stored. In our example code the
contents, held in the file inputsignal_
square1khz.c, define a 1kHz square
wave signal. Notice that again, this
datatype is a Microchip defined one.
It is used to represent a special form
of non-integer values that are encoded
into a 16-bit integer variable. In next
months article we replace the contents
of this array with samples taken
from the ADC peripheral. The use of
a fractional datatype is very helpful
because the ADC peripheral supports
outputting data in a fractional format
– so once the ADC is correctly
configured, we will not need to modify
the data coming from the ADC before
placing in this buffer. That will save
lots of processing time.

fractional output[]
This array is used to store the
output of the conversion from
the FFT function’s complex data
output and a squared magnitude
representation, performed by the
function SquareMagnitudeCplx().
The output buffer holds the data
that we will use in our subsequent
calculations. We make use of the square
of the magnitude rather than calculate
the magnitude itself, as the square-root
function required to do this is very time

consuming. For our applications,
where we are only interested in
finding the peak frequencies,
it’s not necessary to perform the
square root computation. We used
exactly the same technique in our
speed camera detector project back
in January 2005 to provide a fast
display update.

That short list of variables is
followed by a simple main()
function, which performs all the
function calls. It’s actually quite
straightforward, and the list of
functions called is very short:

• Copy the input data to the
sigCmpx

• Call the FFT
• Compute square magnitude
• Find the peak frequency

A point of interest is how the
fractional input array is copied to
the fractcomplex sigCmpx array.
Two steps are involved; the imaginary
component in sigCmpx is set to
zero, and the real component is set
to half of the input data value. This
is a requirement of Microchip’s FFT
function and is mentioned in the DSP
library help file. Although a fractional
variable can store values between –1.0
and +1.0, the FFT function requires
that data be scaled down to between
–0.5 and +0.5. A simple shift-right
operation performs this.

Running the sample application
Returning to the configuration bits,
we selected the internal RC oscillator
as the source, and enabled the PLL
(phase-locked loop) to multiply the RC
oscillator’s output to 140MHz, giving
us the highest processing speed of 70

million instructions per second. We
also added code within the main()
function to toggle our LEDs, enabling
the use of an oscilloscope to measure the
execution time of the FFT conversion.
The breadboard setup, now connected
to the IDE and ready to go, is shown in
Fig.2, and the schematic in Fig.3. Note
that we do not have an external power
supply – the PICkit 3 can provide the
power itself.

We were delighted to find that the
full process of copying data, FFT,
square magnitude and peak detection
took just under one millisecond. This
is fantastic, because even when we
add the time required to perform 512
ADC samples, we will be running fast
enough to be able to update a display
several times a second. So, our tiny
microcontroller is quite a powerful
beast!

Final thoughts on FFT
Although we have discussed the
magic of the FFT (Fast Fourier
Transform), we’ve not yet spoken
about the relationship between signal
sample rate and FFT block size, and
how these two relate to the values
that are output by the FFT. Hopefully,
with the aid of Fig.4 we can explain
that.

At the top of Fig.4 we have our input
signal – in this case, a nice simple
sinewave. This is being sampled at a
periodic interval. Eight samples are
presented to the FFT algorithm, so the
block length in this example is eight.
(In our code we are using 512 samples,
but this example shows just eight
for clarity.) With eight samples, our
sampling window (Tw) is eight times
the ADC sample rate.

The FFT provides eight outputs – the
same number as the number of inputs.
Each output is a complex number,

Fig.2. Completed breadboard

PnM01-May18
93mm x 2 COL

28

27

26

25

24

23

22

21

20

19

18

17

16

15

470Ω

1

2

3

4

5

6

7

8

9

10

11

12

13

14

MCLR

AN0/OA2OUT/RA0

AN1/C2IN1+/RA1

PGED3/VREF–/AN2/C2IN1-/SS1/RPI32/CTED2/RB0

PGEC3/VREF+/AN3/OA1OUT/RPI33/CTED1/RB1

PGEC1/AN4/C1IN1+/RPI34/RB2

PGED1/AN5/C1IN1-/RP35/RB3

VSS

OSC1/CLKI/RA2

OSC2/CLKO/RA3

RP36/RB4

CVREF2O/RP20/T1CK/RA4

VDD

PGED2/ASDA2/RP37/RB5

AVDD

AVSS

RPI47/T5CK/RB15

RPI46/T3CK/RB14

RPI45/CTPLS/RB13

RPI44/RB12

TDI/RP43/RB11

TDO/RP42/RB10

VCAP

VSS

MS/ASDA1/SDI1/RP41/RB9

TCK/CVREF1O/ASCL1/SDO1/RP40/T4CK/RB8

SCK1/RP39/INT0/RB7

PGEC2/ASCL2/RP38/RB6

dsPIC33EP512GP502
(SPDIP package)

MCLR

3.3V

GND

PGD

PGC

3.3V

0V

10kΩ

PICkit 3
Header

470Ω

10µF

100nF

100nF 100nF

+

Fig.3. Breadboard schematic

Pic n Mix (MP 1st & MH) – MAY 2018.indd 50 22/03/2018 21:31

Everyday Practical Electronics, May 2018 51

Fig.5. DSPic OP-AMP peripheral

PnM04-May18
91mm x 2 COL

Time

Frequency

C
om

pl
ex

 m
ag

ni
tu

de
A

D
C

 v
al

ue

Resolution

Sample
rate

Frequency span

Window time

Fast Fourier transform function

F1 F2 F3 F4 F5 F6 F7 F8

+

–

PnM05-May18
51mm x 2 COL

+

–

CMPx

Op Ampx

Blanking
Function

Digital
Filter PTG Trigger

Input

OAx/ANx
(to ADC)

CxOUT

RINT1

VIN–

00

01

0

1

Op Amp / Comparator

CCH<1:0> (CMxCON<1:0>)

CREF (CMxCON<4>)

VIN+

CxIN1–

CxIN2–

CxIN1+

CVREFIN

OAxOUT/ANx

OPMODE (CMxCON<10>)

Fig.4. FFT conversion

to find an old discarded microphone
with unpredictable performance. We
are not looking for high audio quality
here, so the cheapest option will be
perfectly acceptable.

The other circuit change we will
have to add next month will be
correctly scaling the input signal from
the microphone to match the input
range of the microcontroller’s ADC.
If the output from the microphone
is a few hundred millivolts, then we
will need to amplify it by a factor of
10 or more. To achieve this, we plan
to make use of a novel peripheral
integrated into the microcontroller
– an op amp, shown in Fig.5. It
would seem that Microchip have
included this for exactly the purpose
we are intending, to reduce the
circuit component count by two
components, a dedicated op amp IC
plus resistor. Once again, we would
not be using this if we were looking
for a high quality op amp, but given
our project needs, it should be spot
on. This is the first time we have

denoting a specific frequency, and
its magnitude. Each of these outputs
is called a ‘bin’, as it contains the
magnitude of a range of frequencies,
the range being the resolution of
that bin. Each bin spans a frequency
defined by 1/Tw.

What about trying a real-world
example? Well, next month we will be
listening to the sound of guitar strings.
Let’s make a rough assumption that the
maximum frequency we are interested
in resolving is 1kHz. If that is the
maximum, then Nyquist’s theory says
we need to sample at twice that rate, so
our sample rate will be 2kHz. We have
an FFT block size of 512, so our window size is 256ms.
Given that the bandwidth of each bin is defined as 1/Tw,
each bin spans a frequency range of 3.9Hz. Probably good
enough for tuning a guitar – but we are not experts, so do
feel free to comment!

If better resolution is required, then clearly that means
spending more time taking samples, and having a bigger
FFT, which will take longer to compute. So, there is a
delicate balance between accuracy and response time.

Next month
In next month’s article we expand the circuit to include
audio input from an electret microphone, so we can collect
data from the real world, and attempt to create a guitar tuner.
The choice of Electret microphone is largely uncritical; we
are using the cheapest one available from Farnell – part
number 2066501. Costing less than a pound and with free
next day delivery, it is simply not worth rummaging around

Looking to advertise?
Contact

Stewart Kearn on:

01202 880299

or email

stewart.kearn@
wimborne.co.uk

used an op amp integrated into a microcontroller, so next
month is going to be exciting!

If you are wondering how you will follow this article
series along if you do not own a guitar – which most of
us do not – fear not. We will be using a freely available
audio signal generator program for the PC to create the
guitar string sounds, available from here: www.ringbell.
co.uk/software/audio.htm. And there are many different
audio generators available, even for smart phones. So
testing the circuit will not be difficult. We have several
guitars available, so this project will be getting a genuine
real-world test next month.

Pic n Mix (MP 1st & MH) – MAY 2018.indd 51 22/03/2018 21:32

