@ Ryan Andrews Sep 4, 2015

Have you ever seen the wheels on a car actually spin backward while the car is moving forward? Barring
an extreme stunt, I'll bet you probably saw it in a car commercial. Have you ever wondered why?

Real life happens in continuous time, but a video camera can only record a limited number of frames per
second. Each frame may capture the wheels in a different position, so depending on how many rotations
the wheels complete between frames, they might actually appear to be rotating backward as you watch
the video! This effect is known as aliasing.

Data-acquisition systems using analog-to-digital converters (ADCs) experience this same phenomenon
as they make discrete “snapshots” of a continuous time signal. In this post, I'll introduce what aliasing
looks like in the world of ADCs.

Figure 1: Classic example of aliasing in car commercials

What is aliasing?

According to the Nyquist theorem, an ADC must sample the input signal at least twice as fast as its
highest-frequency component in order to reproduce the original signal in the digital domain — otherwise,
aliases are produced. This minimum required sampling rate is known as the Nyquist rate. Or conversely,
the highest-frequency signal that an ADC can accurately convert is one-half the sampling rate, known as
the Nyquist frequency.

Let's take a look at an example data-acquisition system with an ADC sampling a 6-Hz input sine wave at
7 samples-per-second (SPS). Our resulting Nyquist frequency is 3.5Hz, with any input signal frequencies
greater than 3.5Hz generating aliases of the original input. Figure 2 illustrates what this looks like in the

time domain using the original 6-Hz input and two of its aliases: THz and 8Hz. Since all three sine waves



- intersect at each sample, a 6-Hz sine wave sampled at 7SPS will look no different than a 1-Hz or an 8-Hz
sine wave! When we look at the output data, aliasing makes it impossible to differentiate the 6-Hz sine
wave we wanted to measure from its aliases and the desired signal content is lost.
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Figure 2: Aliasing in the time domain

But how could you have known that a 6-Hz sine wave would have aliases at THz and 8Hz? Looking at
aliasing in the frequency domain makes this more apparent. When sampled by an ADC, the frequency
content of the input signal repeats itself at multiples of the sampling rate, starting at DC. Now you can
see why the term “folding back” is often used to describe how signals alias — if you were to fold Figure 3
at the dotted lines, these signals would overlap each other perfectly.
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Figure 3: Aliasing in the frequency domain

To properly measure an input sine wave, the sampling rate must satisfy the Nyquist sampling criteria. In
the example above, you would need to increase the sampling rate to at least 12SPS. At exactly 12SPS,
the 6-Hz input will still fold back to DC and add an offset to the measurement, so sampling just a little
faster ensures that your signals of interest do not alias at all.

But what about noise? White noise occurs across all frequencies, so it will undoubtedly alias from higher
frequencies back into the passband between DC and the Nyquist frequency. The result is a higher in-
band noise level, which will degrade important specifications like signal-to-noise ratio (SNR). Fortunately,
there’s a solution for that: the anti-aliasing filter.

Anti-aliasing filters

Most ADCs are preceded by an anti-aliasing filter, which is nothing more than a low-pass filter used to
attenuate signals beyond the bandwidth of interest. The response of an ideal anti-aliasing filter is
perfectly flat up until the Nyquist frequency, after which it rolls off sharply to attenuate out-of-band

frequencies as shown in Figure 4. Here, the sampling rate has been doubled to 14SPS, which puts the
Nyquist frequency at 7Hz and the original 6-Hz input safely within the passband.
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Figure 4: Frequency response of an ideal anti-aliasing filter

Designing a filter that can achieve this type of frequency response can be very challenging, often
requiring active components. These extra components significantly add to the size, cost, and power
consumption of the signal chain and make implementing such a filter far less ideal.



- To make this easier to understand, I'll show you in a follow-up blog how delta-sigma ADCs significantly

relax the design requirements on your anti-aliasing filter. Additionally, I'll provide some key guidelines to

designing an anti-aliasing filter that's appropriate for your application.

Additional resources

gL

Check out other posts by my colleagues with design tips and delta-sigma ADC basics.

Find more than 100 data converter technical resources in our Data Converter Learning Center.

Learn all about PGA input requirements by fellow Tl applications engineer Bryan Lizon.

Learn about TI's data converter portfolio and find technical resources.
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Donald Reay_ over 9 years ago
| think you mis-state the Nyquist theorem.

According to the Nyquist theorem, an ADC must sample the input signal more than (not 'at least’) twice as
fast as its highest-frequency component.

You effectively concede this later on.

At exactly 12SPS, the 6-Hz input will still fold back to DC and add an offset to the measurement, so
sampling just a little faster ensures that your signals of interest do not alias at all.

Ryan Andrews over 9 years ago

Hi Donald,

Thanks for your comment. By definition, the Nyquist theorem calls for a sampling rate of at least twice the
input frequency. However, we know that in practice, a sampling rate of exactly 2x is not sufficient to
represent it correctly in the digital domain. For all you know, you may be sampling the signal at the zero-
crossing each time, resulting in a DC output. If instead your samples fell in line with the signal's min and
max (or any other part of the signal for that matter), you would still get information about the signal's
frequency, but not enough information to determine it's amplitude or shape with any certainty.

Regards,
Ryan

Ken Dillinger  over 9 years ago
| agree with Donald.

The problem | have seen is that there are inconsistencies between text books. Some will state that the
Nyquist Rate is 2*fmax >= fs while others will state 2*fmax > fs. | have always been taught that the
sampling rate must be more than twice the maximum frequency of interest. Oppenheim & Wilsky, Signals
& Systems states this (see page 519).

In fact, Tim Wescott from Wescott Design Services posted a paper on this very subject some time ago,
"Sampling: What Nyquist Didn't Say And What To Do About It."
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Ryan Andrews over 9 years ago

Hi Ken,

| agree, there are inconsistencies amongst a number of definitions out there as to whether the '='is
included or not. In the end, | hope it's clear that sampling at exactly 2*fmax is generally insufficient and
therefore impractical in most ADC applications.

Thank you both for your comments!

Steve MaclLeod over 9 years ago

It's easy to see pictorially that sampling a signal at twice its rate will not yield its frequency. Draw a sine
wave and mark samples every 180 degrees. It doesn't matter where you start, from symmetry, all the
points will add to zero.
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