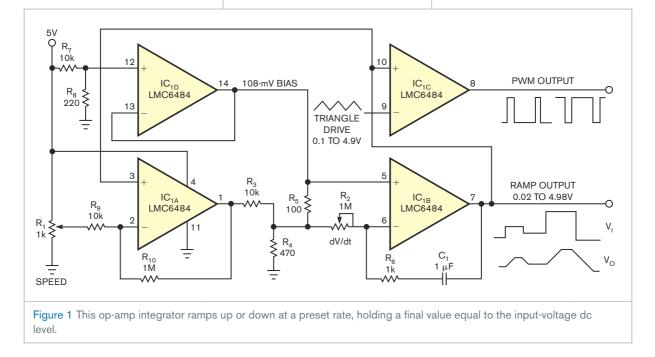
designideas

Integrator ramps up/down, holds output level

Glen Chenier, TeeterTotterTreeStuff, Allen, TX

Op-amp integrators can ramp to saturation, and a capacitordischarge switch can reset them. Alternatively, you can input-switch them to ramp up and down in triangle-waveform-generator applications. Much searching through online "cookbook" circuits turned up no means of ramping an op-amp integrator to hold at a preset constant voltage level. This Design Idea describes a single-supply op-amp circuit that outputs a rising or falling linear-voltage ramp in response to a step change of a positive dc-input voltage of 0V to $V_{\rm CC}$. The output ramp's dV/dt slope is adjustable to 1V/minute with the values in Figure 1, is independent of the input-step amplitude, and terminates at a constant dc level approximately equal to the input-step voltage. Any further change in the dc-input voltage causes the output to ramp up or down at the preset dV/dt to the new dc-input voltage. In effect, this circuit is an amplitude-bounded constant-slope integrator.

The circuit uses a rail-to-rail I/O quad


op amp, the National Semiconductor (www.national.com) LMC6484. The rail-to-rail feature makes it easy to use, the low input leakage is great for long-time-constant integration, and the 3-mV maximum input-offset voltage is respectable. Potentiometer R_1 , a linear taper, sets the input voltage for final output voltage after the ramp ends. IC_{1A}'s output is in saturation at V_{CC} or ground while the output is ramping down or up, respectively.

Nonpolarized capacitor C_1 and potentiometer R_2 , a linear taper, determine the time constant of integrator IC_{1B} . The adjustment range is 0.5V/ msec to 1V/minute. The reference bias for IC_{1D} is 108 mV, which you derive from IC_{1D} as a unity-gain buffer for divider R_7 and R_8 . R_6 ensures that you do not exceed IC_{1B} 's input current when you turn off the power, that C_1 discharges through IC_{1B} 's output does not excessively load back into IC_{1D} 's output with R_2 at a minimum.

 R_3 and R_4 divide the saturated IC₁₄'s

output to approximately 100 mV unloaded above or below the 108-mV bias. This division causes approximately 20 mV to drop across R_5 to slew IC_{1B} upward or downward at the integration rate that C_1 and R_2 set; 20 mV is comfortably above the op amp's possible 3-mV input-offset voltage to minimize offset effects. When IC_{1B}'s outputvoltage ramp reaches that of the input voltage from the R_1 wiper, IC_{1A} comes out of saturation and rests at approximately 2.5V, providing the loop-negative feedback to maintain integrator IC_{1B} 's output equal to the input voltage. This action sets the boundary on the integration ramp's terminal voltage. IC_{1C} can be spare, or, as the figure shows, you can drive it with a triangle-wave signal to convert IC_{1B}'s dc level or ramp to a corresponding PWM (pulse-width-modulated) signal for a motor-drive circuit (not shown).

 R_{5} eliminates differential errors arising from bias-resistor tolerance, and it provides a compromise between IC_{1B} 's 3V maximum input-offset voltage at 25°C and 20-mV input amplitude to allow the slowest dV/dt. The values in the **figure** result in a maximum time of approximately 1V/minute, or 5 minutes at $V_{\rm CC}$ of 5V to reach full speed. If you require longer times,

designideas

you can raise $V_{\rm CC}$ to 15V with adjustments to the bias resistors or raise C_1 's value by using parallel nonpolarized capacitors. Alternatively, you could raise R_2 's value, although selection is sparser for potentiometers with values greater than 1 M Ω .

If your application does not require a long time constant or if you use the aforementioned methods to increase the time constant, you can eliminate R_{ϵ} at the expense of a higher level differential input to IC_{1P} and correspondingly faster integration. You could also eliminate IC_{1D} and the R_7 - R_8 resistive-bias divider that connects directly to IC_{1B}'s Pin 5, but resistor tolerance becomes more critical to minimize differential error (references 1 and 2).EDN

REFERENCES

"Tractive effort, acceleration, and braking," The Mathematical Association, 2004, www.brightlemon.com/ ma/what_use/TractiveEffortAccelera tionAndBraking.doc.

Woof, Tony, "Kilo newtons, kilo watts, kilometres per hour," 2001, www.twoof.freeserve.co.uk/motion1. htm.