Achieving Faster Composite Op-Amp Dynamics by Expanding the Frequency Bandwidth

one hour ago by Dr. Sergio Franco

This is Part 3 of the series of articles about composite amplifiers. In this section, we are going to show how to achieve faster op-amp dynamics by expanding the frequency bandwidth.

In Parts 1 and 2 of a three-article series on composite amplifiers we have investigated how to boost the output current drive capability of an op-amp and simulate our example voltage buffer in PSpice.

Now, we are going to show how to achieve faster op-amp dynamics by expanding the frequency bandwidth.

Expanding the Frequency Bandwidth

The open-loop gain of most op-amps exhibits a constant gain-bandwidth product (constant GBP). The most salient consequence of this constancy is the fact that the higher the noise gain of an op-amp circuit is, the lower the closed-loop bandwidth. For instance, if we configure the op-amp as a noninverting amplifier, in which case the noise gain coincides with the closed-loop gain A, then the closed-loop bandwidth is

$$
f_{B}=\frac{G B P}{A}
$$

Equation 1

So, if we use an op-amp with GBP $=1 \mathrm{MHz}$ and configure it for a noninverting gain of $A=10 \mathrm{~V} / \mathrm{V}$, then we get $f_{B}=10^{6} / 10=100 \mathrm{kHz}$. For $A=100 \mathrm{~V} / \mathrm{V}$ we get $f_{B}=10$ kHz , and for $\mathrm{A}=1,000 \mathrm{~V} / \mathrm{V}$ we get $f_{B}=1 \mathrm{kHz}$.

What if we wanted to use this op-amp as an audio preamplifier with a gain of $1,000 \mathrm{~V} / \mathrm{V}$ and a bandwidth of $f_{B}=20 \mathrm{kHz}$, which represents the upper limit of the audio range?

Clearly, a single 1-MHz op-amp won't do it, so let's see if we can enlist the help of a second, similar op-amp to raise f_{B} from 1 kHz to 20 kHz . Figure 1 shows a popular realization of this concept.

Figure 1. (a) Composite amplifier to achieve a wider bandwidth. (b) Straight-line Bode plots

In the figure, you can see (a) a composite amplifier to achieve a wider bandwidth. and (b) straight-line Bode plots where:

- $|a|$ is the open-loop gain of each op-amp, and f_{t} is the transition frequency ($f_{t}=\mathrm{GBP}$ in the present rendition)
- $\left|a_{c}\right|$ is the composite amplifier's open-loop gain; $\left|A_{2}\right|$ is the closed-loop gain of $O A_{2}$, and f_{2} is its -3 - dB frequency
- $\left|A_{c}\right|$ is the composite amplifier's closed-loop gain, and f_{c} is its $-3-\mathrm{dB}$ frequency
- $|\beta|$ is the feedback factor around the composite amplifier
- $\mathrm{a}_{0}, \mathrm{~A}_{\mathrm{c} 0}$, and A_{20} identify the DC values of the above gains.

Here, $O A_{1}$ is the primary op-amp and $O A_{2}$ is the secondary op-amp, both having an open-loop gain of a. $O A_{2}$ is configured as a noninverting amplifier with a closed-loop gain of A_{2} with a DC value of

$$
A_{20}=1+\frac{R_{4}}{R_{3}}
$$

By Equation 1, with GBP replaced by f_{t}, the closed-loop bandwidth of OA_{2} is

$$
\left.f_{2}=\frac{f_{t}}{A_{20}}\right)
$$

Equation 3

Together, $O A_{1}$ and $O A_{2}$ form a composite amplifier with an open-loop gain of

$$
a_{c}=a \times A_{2}
$$

Equation 4

The presence of OA_{2} inside OA_{1} 's feedback loop has two effects:

- It expands the open-loop gain from a to a_{c}. Due to the logarithmic nature of decibels (the log of a product equals the sum of the logs), the DC values a_{0} and A_{20} add $u p$ in the manner shown.
- It establishes a pole frequency at f_{2}, which causes the slope of the $\left|a_{c}\right|$ curve to change from $-20 \mathrm{~dB} / \mathrm{dec}$ to $-40 \mathrm{~dB} / \mathrm{dec}$, as shown. This pole frequency will erode the phase margin of the loop around $O A_{1}$, so we must be vigilant that the overall circuit does not get destabilized.

The composite amplifier of Figure 1(a) is in turn configured as a noninverting amplifier with a feedback factor of $\beta=R_{l} /\left(R_{1}+R_{2}\right)$. The reciprocal $1 / \beta$ is called the noise gain, and

$$
\frac{1}{\beta}=1+\frac{R_{2}}{R_{1}}
$$

Equation 5
(Recall that for a noninverting op-amp the noise gain and the closed-loop gain coincide, so $\mathrm{A}_{\mathrm{c} 0}=1 / \beta$). Were $O A_{l}$ operating alone, its closed-loop bandwidth would be f_{l} (see Figure 1(b)).

However, the presence of OA_{2} expands the closed-loop bandwidth from f_{1} to f_{c}, where f_{c} is the crossover frequency of the $\left|a_{c}\right|$ and $|1 / \beta|$ curves. It is precisely this bandwidth expansion that we wish to exploit.

To gain better insight, consider the PSpice circuit of Figure 2, simulating a composite amplifier with a closed-loop gain of $1,000 \mathrm{~V} / \mathrm{V}$, or 60 dB .
Scroll to continue with content

Figure 2. PSpice circuit for a composite amplifier using Laplace blocks to simulate 1-MHz op-amps.

Increasing |A2| expands the composite amplifier's open-loop gain |ac| along both the vertical and the horizontal axes, while at the same time reducing EOA2's closed-loop bandwidth f_{2}, as per Equation 3 .

Figure 3(b) shows the effect on the composite amplifier's closed-loop gain A_{c} : all curves exhibit the same DC value of 60 dB ; however, the bandwidth increases with $|\mathrm{A} 2|$.
It is interesting to observe, in Figure 4(a), how OA1 and OA2 cooperate, in complementary fashion, to maintain a constant DC value of 60 dB .

 phase margins of 45° and 65°.

As $|\mathrm{A} 2|$ rises, $|\mathrm{A} 1|$ drops in such a way that their DC values keep adding up to 60 dB as $0+60$, or $10+50$, or $20+40$, or $30+30$. However, also $\mathbf{O A} 2$'s pole frequency f_{2} drops, and in so doing it gradually erodes OA1's phase margin. How far can we raise |A2| before f_{2} destabilizes the composite amplifier? This depends on the phase margin we are willing to accept.

In the absence of $O A_{2}$, the circuit would conform to the situation corresponding to the $1 / \beta_{1}$ curve of Figure 2 of Part 1 , indicating a phase margin of $\varphi_{\mathrm{m}}=90^{\circ}$. With $O A_{2}$ present, φ_{m} gets eroded according to

$$
\phi_{m}=90^{\circ}-\tan ^{-1} \frac{f_{2}}{f_{c}}
$$

Equation 6

Now, exploiting the constancy of the GBP on the $|a|$ curve of Figure 1(b), we write

$$
A_{c 0} \times f_{c}=f_{t} \times A_{20}
$$

$$
\phi_{m}=90^{\circ}-\tan ^{-1} \frac{A_{20}^{2}}{A_{c} 0}
$$

Equation 8

Turning around Equation 8, we can find how far we can increase A_{20} for a given φ_{m} and $\mathrm{A}_{\mathrm{c} 0}$

$$
A_{20}=\sqrt{A_{c 0} \times \tan \left(90^{\circ}\right)-\phi_{m}}
$$

Equation 9

A popular strategy is to impose $f_{2}=f_{c}$, a situation corresponding to the $1 / \beta_{2}$ curve of Figure 2 of Part 1 , for which $\varphi_{\mathrm{m}}=45^{\circ}$. This is achieved by making $A_{20}=\left(A_{c} 0\right)^{1 / 2}$. So, for the PSpice circuit of Figure 2, we need $A_{20}=(1,000)^{1 / 2}=31.6 \mathrm{~V} / \mathrm{V}$, which we implement with $R_{4}=30.6 \mathrm{k} \Omega$. As shown in Figure $4(\mathrm{~b})$, the ensuing closed-loop gain exhibits some peaking around 22 kHz , and a $-3-\mathrm{dB}$ frequency of about 40 kHz .

If the application calls for the absence of peaking, then we shoot for $\varphi_{m}=65^{\circ}$, which marks the onset of peaking. Using Equation 9 we find $A_{20}=21.6 \mathrm{~V} / \mathrm{V}$, which we implement with $R_{4}=20.6 \mathrm{k} \Omega$ in our PSpice circuit of Figure 2. The ensuing response has a $-3-\mathrm{dB}$ frequency of about 30 kHz . This is considerably higher than the bandwidth of 1 kHz that OA1 would yield if acting alone.

It is worth pointing out that besides expanding the bandwidth, the presence of $O A_{2}$ also raises the DC loop gain by A_{20}. In our circuit example of Figure 2, without $O A_{2}$ we would have $f_{B}=1 \mathrm{kHz}$ and a DC loop gain of $T_{0}=\beta \mathrm{a}_{0}=10^{-3} \times 10^{5}=100$. With $O A_{2}$ present and configured for $A_{20}=21.6 \mathrm{~V} / \mathrm{V}$ to give $\varphi_{\mathrm{m}}=65^{\circ}, f_{B}$ gets raised from 1 kHz to 30 kHz , and T_{0} gets raised from 200 to $200 \times A_{20}=200 \times 21.6>4,000$, thus improving the DC precision considerably.

You can readily implement the composite amplifier under discussion using a dual op-amp package.
In the next article, we'll talk about another method of achieving faster op-amp dynamics: raising the slew-rate.

Content From Partners

maxim integrated.

MAXM17623 1.5V Output Evaluation Kit for Battery Powered Applications

Content from Maxim

Continue to site

QUOTE OF THE DAY

