
WORKING WITH
OPa11r11PS by Graham Dixey C.Eng., M.I.E.R.E.

Filtering is the act of separating what is
wanted from what is unwanted. In elec-
tronics this usually means some form pf

separation on the basis of signal frequency.
In the simplest case, signals are divided into
two 'bands' known as low frequencies' and
'high frequencies', separated quite arbirarily
by the 'cut-off' frequency. The fact that
capacitive reactance depends upon fre-
quency is often used to obtain such sepa-
ration. This idea leads to simple filters of the
'inverted -L' type, known as 'low-pass' and
'high-pass' filters; these, together with their
characteristics, are shown in Figure 1.

The characteristics of these simple filters
show that, soon after the cut-off frequency is
reached, the filter cuts off with a constant
slope which is never greater than -6dB/
octave (i.e. -20dB/ decade). This is a basic
limitation where a high degree of separation
is required. Also, there is no gain at all, even
at the wanted frequencies. These filters are
said to be 'passive'. By using the op -amp with
its high gain and differential inputs, filters
can be designed to have real gain and high
degrees of rejection of the unwanted fre-
quencies: these are known as 'active filters'.

The Op -amp as an Active
Filter

To see how the op -amp can be used as
the basis for an active filter, consider a now
familiar circuit, the inverter. This is shown in
Figure 2, where the circuit is drawn twice (a)
and (b), each case illustrating how either the
input component or the feedback compo-
nent can be represented by a 'block' which
could contain literally anything. For ex-
ample, if these components are a resistor R1
and another resistor R2 respectively, the
circuit is then just an inverting amplifier with
a gain of R2/R1, this gain being quite
independent of frequency, at least within the
limitations of the op -amp itself. But, if either
block contains frequency -conscious "com-
ponents, then the situation will be entirely
different. The gain of the amplifier will vary
with frequency and in such a way that it is
under the designer's control by his choice of
network components, either at the input or in
the feedback path or both. Thus, a number of
different configurations for active filters are
possible, based on this idea.

The Twin -tee Selective
Amplifier

One example of a frequency -conscious
network is the twin -tee filter. This has the
characteristic that at a particular frequency,
given by f=1/(27rRC), its impedance is very
high. If the impedance of the network is
called Z2 and it is used in the feedback path,
then it will give a gain of Z2/R1 (if the input
circuit is a simple resistor of value R1); this
gain will be a maximum at the frequency
quoted above. The circuit is obviously selec-
tive and in fact behaves rather like a high -Q
resonant circuit, but at low frequencies
instead of radio frequencies. The frequency
that it selects depends upon the values of R
and C used in the twin -tee network. A
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Figure 1. Simple RC Filters: (a) Low-pass filter
(b) High-pass filter.
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Figure 2. The Basic Idea of an Active Filter.
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Figure 3. A 400hz Twin -tee Selective Amplifier.

selective amplifier of this type is shown in
Figure 3, together with a sketch of relative
output (in dB) as a function of frequency, for
a design frequency of 400 Hz. To use the
amplifier at some other frequency, it is only
necessary to assign new values to R and C
(giving new values to R/2 and 2C at the same
time of course). The R/2 branch should
contain a pre-set part since the circuit
selectivity is best when the resistance of this
branch is actually slightly less than the
nominal value of R/2 calculated. The selec-
tivity can be improved further by adding a
little 'bass -cut'. This is provided by the series
input capacitor Cl, a value equal to 2C being
about right. Using 22nF for C, 2C becomes
44nF; this value can be realised by wiringtwo
22nF capacitors in parallel or, alternatively,
opting for the nearest preferred value of
47nF. The latter choice may well be close
enough.

The Twin -tee Rejector
Instead of selecting a frequency at the

expense of all others, the opposite course of
action may be taken. The circuit is then
made to reject just one frequency and to
pass all others (ideally anyway). The obvious
way of doing this is to place the twin -tee
network in the input of the op -amp, calling its
impedance Z1 now, which will givea very low
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value of gain, R2/Z1, the feedback network
being a simple resistor R2. This gain is a
minimum at a frequency given by the
formula already quoted, as is fairly obvious.
A possible circuit is shown in Figure 4,
additional components being provided so
that the gain 'off the centre frequency' is
defined by R2/R1 (giving unity gain in this
case) as well as giving some degree of
control over the shape of the rejection curve.
For example, increasing the value of R2
increases the gain away from the centre
frequency but does so at the expense of the
sharpness of the curve. At the centre fre-
quency, the situation is more complex
because then R3 comes into play as well; it
also has some effect on the sharpness of cut-
off but, if its value is made too large, use of
RV to obtain maximum rejection of the
centre frequency is more difficult. It is a
point worth experimenting with. For the
values given in Figure 4 and a design
frequency of 400 Hz, a sketch of the
characteristic with RV adjusted as well as
possible is also shown.

For both of these twin -tee filters, note that
the sharpness of cut-off is considerably
greater than that of the simple filters men-
tioned earlier.

Figure 4. A 400Hz Twin -tee Rejector Amplifier.

Figure 5. A Tuned Acceptor Amplifier
(Wien Network).

Figure 6. Second -order Low-pass Filter.
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The Wien Acceptor
Amplifier

An acceptoramplifier is a useful circuit in
that it allows analysis of a complex signal i.e.
one containing a number of harmonics,
which can then be separated into its con-
stituent parts and each measured indivi-
dually. An obvious example of this is the
measurement of harmonic distortion in
audio signals. If the fundamental frequency

Figure 7. Second -order High-pass Filter.
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Figure 9. The FDNR (Frequency -Dependent
Negative -Resistance) Circuit.

and harmonics of a distorted signal are
selected separately by a filter, each can be
measured by an electronic voltmeter to give
information about the percentage of the
various components in the signal. Obviously,
such a filter must be variable and the twin -
tee is not particularly useful in this appli-
cation because of the need to vary three
components at once. For this reason, the
Wien network is a better proposition and a
selective amplifier based on this approach is
shown in Figure 5.

The circuit uses positive feedback from
the output to the non -inverting input, and
negative feedback from the output to the
inverting input. The amount of positive feed-
back can be controlled by RV3 and is
independent of frequency. On the other
hand, the negative feedback is provided by
the Wien network and therefore depends
upon frequency. If RV3 is adjusted correctly,
both types of feedback cancel out at one
particular frequency, given by f=1/(2wRC),
and the gain of the circuit is very high. At all
frequencies above and below this value the
negative feedback predominates and the
gain is low. With the values of R and C given
in Figure 5 the circuit can be tuned to accept
any frequency in the range 1.6-12.5kHz.
Switching values of C would allow several
ranges to be covered.
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Low-pass and High-pass
Filters

Both the circuits of Figure 6 and Figure 7
are known as 'second order' filters because
they double up on the use of the previously
mentioned inverted -L filter sections. As a
result, the ultimate cut-off slope is 12dB/
octave instead of being only 6dB/octave.
The circuits are arranged to give unity gain
over the passband but substantial attenua-
tion outside the passband.

The filter elements for Figure 6 and
Figure 7 are R and C and, for the single
inverted -L section, the cut-off frequency
(-3dB) is obtained when R=1/(27rfC) which,
by transposition, means that the cut-off
frequency f=1/(27rRC). However, the use of
two identical sections means that the atten-
uation is actually -6dB at this frequency so
that the true -3dB frequency is rather
different than give by the above formula fora
single section.

For example, in Figure 6, the cut-off
frequency for a single section works out at
339Hz but the actual value obtained for the
second order circuit is nearer 200Hz.

Similarly for the circuit of Figure 7 while
the cut-off frequency for a single section
works out at 3.386kHz, the actual cut-off
frequency for the second order circuit was
found to be about 5kHz.

An Alternative Approach
So far each active filter presented has

consisted of a well-known passive filter used
in conjunction with an op -amp, the filter type
being quite clearly identifiable e.g. as in the
Wien circuit.

Now a completely different approach will
be demonstrated which shows even more

Figure 10. A Low-pass Passive RLC Filter.
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Figure 11. Design for a FDNR-based Low-pass
Active Filter.

clearly the clever tricks that can be played
with the aid of op -amps.

The starting point is the idea that induc-
torsand capacitors can be 'simulated' by any
circuit that produces a 'lagging' or 'leading'
phase angle between applied voltage and
the resulting current respectively. To illu-
strate the first case, Figure 8 shows how two
op -amps can be connected to produce a
'gyrator' circuit or simulated inductor. This
apparent inductor appears between the
terminals shown and the major advantage is
that a costly, heavy and bulky component is
replaced by a handful of small, cheap ones;
also the inductance value is readily
changed. Thus, any real filter that contains

an inductor could contain a gyrator circuit
instead. However, inductors in LCR filters
are often in series with the signal and the
gyrator simulates an inductor which has one
terminal earthed, a slight disadvantage.

This limitation of the gyrator is overcome
by the circuit arrangement of Figure 9, which
is known as the 'frequency -dependent nega-
tive -resistance' circuit or just FDNR for short.
This circuit simulates a capacitor but, and
here is the clever bit, when a passive filter
normally comprised of L, C and R is synthe-
sised by a circuit arrangement based on the
FDNR, not only is C replaced by the FDNR but
R is replaced by a capacitor C' and L is
replaced by a resistor R', the following
relations being used to find the component
values in the synthesised circuit.

New capacitance C' (Farads) = 1/R
(R in ohms)

New resistance R' (Ohms) = L (L in
Henries)

Note that the final synthesised circuit
contains no inductors, just resistance, capa-
citance and FDNRs.

The component values for the FDNR
circuit to replace a given value of capaci-
tance C are obtained from the relation,

C = (R1 x R3 x Cl x C2)/R2
(capacitance values in Farads, resistance
values in Ohms).

What this implies is that it is possible to
design any conventional filter based on R, L
and C and then translate the required
passive values into those for the FDNR
circuit, using the relations given above. To
conclude, an example of a design using this
approach will now be given.

Low-pass FDNR Filter
Figure 10 shows a T -filter using high

value series inductors. Such components
are inconvenient because of cost, weight,
size, etc., and the use of an FDNR-based
filter allows them to be eliminated. Suppose
that the filter is to cut off at 500Hz, the values
of the passive components being found from
the following two simple formulae.

(1) Cut-off frequency = 1/(7,c/2LC)
(2) R =2L/C
As a starting point, let L be equal to some

arbitrary value and then evaluate C for the
cut-off frequency of 500Hz; if C turns out to
have a ridiculous value then choose another
value of L and try again. Suppose Lis 200H,
then the formula (1) gives a value of C of
about 1n F, a perfectly reasonable value. Now
R can be evaluated from formula (2) and is
found to be 632k.

Thus, for the passive circuit, the values
are L = 200H; C = 1nF and R = 632k. These
are the values that must now be transformed
into the values for the synthesised circuit.

Thus, for the FDNR-based circuit, C' = 1/
(632 x 103), = 1.6uF; R' = 200 ohms and the
values for the FDNR circuit are related by the
expression

C=1x109=(R1x R3xC1xC2)/R2
Again an initial choice has to be made.

Suppose that a guess is made at reasonable
values for the numerator e.g. R1 = 10k;
R3 = 1O0k; Cl = C2 = 100n F, this leaves R2
as the only unknown and by substituting
these values into the expression just given
and transposing it, R2 is found to be 10k,
which is perfectly reasonable. It is obvious
that a certain amount of judgement and/or
experience is invaluable in this sort of
design. The complete circuit is shown in
Figure 11.

This example has been presented to
illustrate the unique nature of this type of
active filter design. The same type
of approach can be applied to other cir-
cuits employing passive components.
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